Forensic analysis of the 38 subject deaths in the 6-Month Interim Report of the Pfizer/BioNTech BNT162b2 mRNA Vaccine Clinical Trial

Authors

  • Corinne Michels DailyClout
  • Daniel Perrier
  • Jeyanthi Kunadhasan
  • Ed Clark
  • Joseph Gehrett
  • Barbara Gehrett
  • Kim Kwiatek
  • Sarah Adams
  • Robert Chandler
  • Leah Stagno
  • Tony Damian
  • Erika Delph
  • Chris Flowers https://orcid.org/0009-0008-9853-6677

DOI:

https://doi.org/10.56098/ijvtpr.v3i1.85

Keywords:

BNT162b2 vaccine, Pfizer/BioNTech, cardiovascular events, COVID-19, placebo-controlled clinical trial

Abstract

The analysis reported here is unique in that it is the first study of the original data from the Pfizer/BioNTech BNT162b2 mRNA vaccine clinical trial (CA4591001) to be carried out by a group unaffiliated with the trial sponsor. Our study is a forensic analysis of the 38 trial subjects who died between July 27, 2020, the start of Phase 2/3 of the clinical trial, and March 13, 2021, the data end date of their 6-Month Interim Report. Phase 2/3 of the trial involved 44,060 subjects who were equally distributed into two groups and received Dose 1 of either the BNT162b2 mRNA vaccinated or the Placebo control (0.9% normal saline). At Week 20, when the BNT162b2 mRNA vaccine received Emergency Use Authorization from the U.S. FDA, subjects in the placebo arm were given the option to be BNT162b2 vaccinated. All but a few accepted. Surprisingly, a comparison of the number of subject deaths per week during the 33 Weeks of this study found no significant difference between the number of deaths in the vaccinated versus placebo arms for the first 20 weeks of the trial, the placebo-controlled portion of the trial.  After Week 20, as subjects in the Placebo were unblinded and vaccinated, deaths among this still unvaccinated cohort of this group slowed and eventually plateaued. Deaths in the BNT162b2 vaccinated subjects continued at the same rate. Our analysis revealed inconsistencies between the subject data listed in the 6-Month Interim Report and publications authored by Pfizer/BioNTech trial site administrators. Most importantly, we found evidence of an over 3.7-fold increase in number of deaths due to cardiovascular events in BNT162b2 vaccinated subjects compared to Placebo controls. This significant adverse event signal was not reported by Pfizer/BioNTech. Potential sources of these data inconsistencies are identified.

References

7.4 STN Summary Clinical Safety https://phmpt.org/wp-content/uploads/2021/12/STN-125742_0_0-Section-2.7.4-summary-clin-safety.pdf#page=345

-Month Interim Report of Adverse Events C4591001 https://pdata0916.s3.us-east-2.amazonaws.com/pdocs/070122/125742_S1_M5_5351_c4591001-interim-mth6-adverse-events.zip#page=3646

1.7.1 Listing of Randomization Scheme and Actual Vaccine Received – All Subjects ≥16 Years of Age https://phmpt.org/wp-content/uploads/2022/05/125742_S1_M5_5351_c4591001-interim-mth6-randomization-sensitive.pdf#page=4377

2.1.1 Listing of Subjects Discontinued From Vaccination and/or From the Study – All Subjects ≥16 Years of Age https://phmpt.org/wp-content/uploads/2022/07/125742_S1_M5_5351_c4591001-interim-mth6-discontinued-patients.pdf#page=233

A Phase 1/2/3 Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of RNA Vaccine Candidates Against COVID-19 in Healthy Individuals https://cdn.pfizer.com/pfizercom/2020-11/C4591001_Clinical_Protocol_Nov2020.pdf

Alberer, M., Gnad-Vogt, U., Hong, H. S., Mehr, K. T., Backert, L., Finak, G., Gottardo, R., Bica, M. A., Garofano, A., Koch, S. D., Fotin-Mleczek, M., Hoerr, I., Clemens, R., & Von Sonnenburg, F. (2017). Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet, 390(10101), 1511–1520. https://doi.org/10.1016/S0140-6736(17)31665-3

Aldrich, C., Leroux–Roels, I., Huang, K. B., Bica, M. A., Loeliger, E., Schoenborn-Kellenberger, O., Walz, L., Leroux-Roels, G., Von Sonnenburg, F., & Oostvogels, L. (2021). Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine, 39(8), 1310–1318. https://doi.org/10.1016/j.vaccine.2020.12.070

Altman, P., Rowe, J., Hoy, W., Brady, G., Cosford, R., & Wauchope, B. (2023, January 5). Did National Security Imperatives Compromise COVID-19 Vaccine Safety? Brownstone Institute. https://brownstone.org/articles/did-national-security-imperatives-compromise-covid-19-vaccine-safety/

Analysis Data Reviewer Guide BLA Analysis for Participants ≥16 Years of Age BioNTech SE and PFIZER INC. Study C4591001 https://phmpt.org/wp-content/uploads/2022/03/125742_S1_M5_c4591001-A-adrg.pdf#page=85

Avolio, E., Carrabba, M., Milligan, R., Kavanagh Williamson, M., Beltrami, A. P., Gupta, K., Elvers, K. T., Gamez, M., Foster, R. R., Gillespie, K., Hamilton, F., Arnold, D., Berger, I., Davidson, A. D., Hill, D., Caputo, M., & Madeddu, P. (2021). The SARS-CoV-2 Spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling: A potential non-infective mechanism of COVID-19 microvascular disease. Clinical Science, 135(24), 2667–2689. https://doi.org/10.1042/CS20210735

Barda, N., Dagan, N., Ben-Shlomo, Y., Kepten, E., Waxman, J., Ohana, R., Hernán, M. A., Lipsitch, M., Kohane, I., Netzer, D., Reis, B. Y., & Balicer, R. D. (2021). Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. New England Journal of Medicine, 385(12), 1078–1090. https://doi.org/10.1056/NEJMoa2110475

Basavaraju, S. V., Patton, M. E., Grimm, K., Rasheed, M. A. U., Lester, S., Mills, L., Stumpf, M., Freeman, B., Tamin, A., Harcourt, J., Schiffer, J., Semenova, V., Li, H., Alston, B., Ategbole, M., Bolcen, S., Boulay, D., Browning, P., Cronin, L., … Stramer, S. L. (2021). Serologic Testing of US Blood Donations to Identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)–Reactive Antibodies: December 2019–January 2020. Clinical Infectious Diseases, 72(12), e1004–e1009. https://doi.org/10.1093/cid/ciaa1785

Brogna, C., Cristoni, S., Marino, G., Montano, L., Viduto, V., Fabrowski, M., Lettieri, G., & Piscopo, M. (2023). Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. PROTEOMICS – Clinical Applications, 00, 1–7. https://doi.org/10.1002/prca.202300048

De Michele, M., d’Amati, G., Leopizzi, M., Iacobucci, M., Berto, I., Lorenzano, S., Mazzuti, L., Turriziani, O., Schiavo, O. G., & Toni, D. (2022). Evidence of SARS-CoV-2 spike protein on retrieved thrombi from COVID-19 patients. Journal of Hematology & Oncology, 15(1), 108. https://doi.org/10.1186/s13045-022-01329-w

Dolgin, E. (2021). The tangled history of mRNA vaccines. Nature, 597(7876), 318–324. https://doi.org/10.1038/d41586-021-02483-w

Emergency Use Authorization for an Unapproved Product Review Memorandum https://archive.org/details/emergency-use-authorization-eua-for-an-unapproved-product-review-memorandum

Fleming, D. R. M. (2021). Is COVID-19 a Bioweapon? A Scientific and Forensic Investigation. Skyhorse. https://www.simonandschuster.com/books/Is-COVID-19-a-Bioweapon/Richard-M-Fleming/Children-s-Health-Defense/9781510770195

Geall, A. J., Verma, A., Otten, G. R., Shaw, C. A., Hekele, A., Banerjee, K., Cu, Y., Beard, C. W., Brito, L. A., Krucker, T., O’Hagan, D. T., Singh, M., Mason, P. W., Valiante, N. M., Dormitzer, P. R., Barnett, S. W., Rappuoli, R., Ulmer, J. B., & Mandl, C. W. (2012). Nonviral delivery of self-amplifying RNA vaccines. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14604–14609. https://doi.org/10.1073/pnas.1209367109

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England), 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

Kell, D. B., Laubscher, G. J., & Pretorius, E. (2022). A central role for amyloid fibrin microclots in long COVID/PASC: Origins and therapeutic implications. Biochemical Journal, 479(4), 537–559. https://doi.org/10.1042/BCJ20220016

Krauson, A. J., Casimero, F. V. C., Siddiquee, Z., & Stone, J. R. (2023). Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. Npj Vaccines, 8(1), 141. https://doi.org/10.1038/s41541-023-00742-7

Lutz, J., Lazzaro, S., Habbeddine, M., Schmidt, K. E., Baumhof, P., Mui, B. L., Tam, Y. K., Madden, T. D., Hope, M. J., Heidenreich, R., & Fotin-Mleczek, M. (2017). Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. Npj Vaccines, 2(1), 29. https://doi.org/10.1038/s41541-017-0032-6

Martinez, W. C. (2021). How to get away with immunity: FDA’s Emergency Use Authorization Scheme and PREP Act Liability Protection in the context of COVID-19. Loyola Consumer Law Review, 33, 1. https://heinonline.org/HOL/Page?handle=hein.journals/lyclr33&id=103&div=&collection

Murphy, S. L., Kochanek, K. D., Xu, J., & Arias, E. (2021). Mortality in the United States, 2020. 427. https://stacks.cdc.gov/view/cdc/112079

Nelson, K. E. (2012). Invited Commentary: Influenza Vaccine and Guillain-Barre Syndrome--Is There a Risk? American Journal of Epidemiology, 175(11), 1129–1132. https://doi.org/10.1093/aje/kws194

Nyström, S., & Hammarström, P. (2022). Amyloidogenesis of SARS-CoV-2 Spike Protein. Journal of the American Chemical Society, 144(20), 8945–8950. https://doi.org/10.1021/jacs.2c03925

Office of the Secretary of Preparedness and Response. (2021, April 13). PREP Act Immunity from Liability for COVID-19 Vaccinators. https://www.phe.gov/emergency/events/COVID19/COVIDVaccinators/Pages/PREP-Act-Immunity-from-Liability-for-COVID-19-Vaccinators.aspx

Pfizer-BioNTech COVID-19 Vaccine FDA Briefing Document VRBPAC December 10, 2020 meeting https://archive.org/details/vrbpac-12.17.20-meeting-briefing-document-fda-0

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Hammitt, L. L., … Gruber, W. C. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577

Rancourt, D. G., Baudin, M., Hickey, J., & Mercier, J. (2023). COVID-19 vaccine-associated mortality in the Southern Hemisphere (CORRELATION Research in the Public Interest). https://correlation-canada.org/covid-19-vaccine-associated-mortality-in-the-Southern-Hemisphere/

Rcheulishvili, N., Papukashvili, D., Liu, C., Ji, Y., He, Y., & Wang, P. G. (2022). Promising strategy for developing mRNA-based universal influenza virus vaccine for human population, poultry, and pigs– focus on the bigger picture. Frontiers in Immunology, 13, 1025884. https://doi.org/10.3389/fimmu.2022.1025884

Read, A. F., Baigent, S. J., Powers, C., Kgosana, L. B., Blackwell, L., Smith, L. P., Kennedy, D. A., Walkden-Brown, S. W., & Nair, V. K. (2015). Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLOS Biology, 13(7), e1002198. https://doi.org/10.1371/journal.pbio.1002198

Romero, E., Fry, S., & Hooker, B. (2023). Safety of mRNA Vaccines Administered During the First Twenty-Four Months of the International COVID-19 Vaccination Program. International Journal of Vaccine Theory, Practice, and Research, 3(1), 891–910. https://doi.org/10.56098/ijvtpr.v3i1.70

Sahin, U., Karikó, K., & Türeci, Ö. (2014). mRNA-based therapeutics—Developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759–780. https://doi.org/10.1038/nrd4278

Santiago, D., & Oller, J. W. (2023). Abnormal Clots and All-Cause Mortality During the Pandemic Experiment: Five Doses of COVID-19 Vaccine Are Evidently Lethal to Nearly All Medicare Participants. International Journal of Vaccine Theory, Practice, and Research, 3(1), 847–890. https://doi.org/10.56098/ijvtpr.v3i1.73

Schmeck, H. M. (1976, October 13). Swine Flu Program Halted in 9 States As 3 Die After Shots. New York Times, 1.

Schnee, M., Vogel, A. B., Voss, D., Petsch, B., Baumhof, P., Kramps, T., & Stitz, L. (2016). An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs. PLOS Neglected Tropical Diseases, 10(6), e0004746. https://doi.org/10.1371/journal.pntd.0004746

Schwartz, H. (1976, December 21). Swine Flu Fiasco. New York Times. https://www.nytimes.com/1976/12/21/archives/swine-flu-fiasco.html

Sebastian, M., Schröder, A., Scheel, B., Hong, H. S., Muth, A., Von Boehmer, L., Zippelius, A., Mayer, F., Reck, M., Atanackovic, D., Thomas, M., Schneller, F., Stöhlmacher, J., Bernhard, H., Gröschel, A., Lander, T., Probst, J., Strack, T., Wiegand, V., … Koch, S. D. (2019). A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunology, Immunotherapy, 68(5), 799–812. https://doi.org/10.1007/s00262-019-02315-x

Thomas, S. J., Moreira, E. D., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Polack, F. P., Zerbini, C., Bailey, R., Swanson, K. A., Xu, X., Roychoudhury, S., Koury, K., Bouguermouh, S., Kalina, W. V., Cooper, D., Frenck, R. W., … Jansen, K. U. (2021). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. New England Journal of Medicine, 385(19), 1761–1773. https://doi.org/10.1056/NEJMoa2110345

Trougakos, I. P., Terpos, E., Alexopoulos, H., Politou, M., Paraskevis, D., Scorilas, A., Kastritis, E., Andreakos, E., & Dimopoulos, M. A. (2022). Adverse effects of COVID-19 mRNA vaccines: The spike hypothesis. Trends in Molecular Medicine, 28(7), 542–554. https://doi.org/10.1016/j.molmed.2022.04.007

Trump, D. (2020, November 13). Remarks by President Trump During an Update on Operation Warp Speed – The White House. https://trumpwhitehouse.archives.gov/briefings-statements/remarks-president-trump-update-operation-warp-speed/

US Government Accounting Office (US GAO). (2021, February 11). Operation Warp Speed: Accelerated COVID-19 Vaccine Development Status and Efforts to Address Manufacturing Challenges | U.S. GAO. https://www.gao.gov/products/gao-21-319

WHO Ad Hoc Expert Group on the Next Steps for Covid-19 Vaccine Evaluation. (2021). Placebo-Controlled Trials of Covid-19 Vaccines—Why We Still Need Them. New England Journal of Medicine, 384(2), e2. https://doi.org/10.1056/NEJMp2033538

Witberg, G., Barda, N., Hoss, S., Richter, I., Wiessman, M., Aviv, Y., Grinberg, T., Auster, O., Dagan, N., Balicer, R. D., & Kornowski, R. (2021). Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. New England Journal of Medicine, 385(23), 2132–2139. https://doi.org/10.1056/NEJMoa2110737

Wong, H.-L., Tworkoski, E., Ke Zhou, C., Hu, M., Thompson, D., Lufkin, B., Do, R., Feinberg, L., Chillarige, Y., Dimova, R., Lloyd, P. C., MaCurdy, T., Forshee, R. A., Kelman, J. A., Shoaibi, A., & Anderson, S. A. (2023). Surveillance of COVID-19 vaccine safety among elderly persons aged 65 years and older. Vaccine, 41(2), 532–539. https://doi.org/10.1016/j.vaccine.2022.11.069

Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3

Downloads

Published

2023-10-17

How to Cite

Forensic analysis of the 38 subject deaths in the 6-Month Interim Report of the Pfizer/BioNTech BNT162b2 mRNA Vaccine Clinical Trial. (2023). International Journal of Vaccine Theory, Practice, and Research , 3(1), 973-1008. https://doi.org/10.56098/ijvtpr.v3i1.85

Similar Articles

1-10 of 56

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6