COVID-19 Modified mRNA “Vaccines” Part 1: Lessons Learned from Clinical Trials, Mass Vaccination, and the Bio-Pharmaceutical Complex

Authors

  • M. Nathaniel Mead Independent Researcher
  • Stephanie Seneff Massachusetts Institute of Technology
  • Russ Wolfinger Independent Researcher
  • Jessica Rose Independent Researcher
  • Kris Denhaerynck Independent Researcher
  • Steve Kirsch Independent Researcher
  • Peter A McCullough

DOI:

https://doi.org/10.56098/fdrasy50

Keywords:

adverse events, COVID-19 modified mRNA vaccines, COVID-19 vaccines, COVID-19 registrational trials, serious adverse events, genetic therapy, gene-therapy, safe and effective, all cause mortality

Abstract

Our understanding of COVID-19 synthetic, modified mRNA (modmRNA) products and their public health impact has evolved substantially since December 2020. Published reports from the original randomized placebo-controlled trials concluded that the modmRNA injections could greatly reduce COVID-19 symptoms. However, the premature termination of both trials obviated any reliable assessment of potential adverse events due to an insufficient timeframe for proper safety evaluation. Following authorization of the modmRNA products for global distribution, problems with the methods and execution of the trials have emerged. The usual safety testing protocols and toxicology requirements were bypassed. Many key trial findings were either misreported or omitted entirely from published trial reports. By implication, the secondary estimates of excess morbidity and mortality in both trials must be deemed underestimates. Rigorous re-analyses of trial data and post-marketing surveillance studies indicate a substantial degree of modmRNA-related harms than was initially reported. Confidential Pfizer documents had revealed 1.6 million adverse events by August 2022. A third were serious injuries to cardiovascular, neurological, thrombotic, immunological, and reproductive systems, along with an alarming increase in cancers. Moreover, well-designed studies have shown that repeated modmRNA injections cause immune dysfunction, thereby potentially contributing to heightened susceptibility to SARS-CoV-2 infections and increased risks of COVID-19. This paper also discusses the insidious influence of the Bio-Pharmaceutical Complex, a closely coordinated collaboration between public health organizations, pharmaceutical companies, and regulatory agencies. We recommend a global moratorium on the modmRNA products until proper safety and toxicological studies are conducted.

Author Biographies

  • M. Nathaniel Mead, Independent Researcher

    Biology and Nutritional Epidemiology, Independent Research, Copper Hill, VA, USA 

  • Stephanie Seneff, Massachusetts Institute of Technology

    Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA,  USA 

  • Russ Wolfinger, Independent Researcher

    Biostatistics and Epidemiology, Independent Research, Research Triangle Park, NC, USA 

  • Jessica Rose, Independent Researcher

    Immunology and Public Health Research, Independent Research, Ottawa, Ontario, Canada 

  • Kris Denhaerynck, Independent Researcher

    Epidemiology & Biostatistics, Independent Research, Basel, Switzerland 

  • Steve Kirsch, Independent Researcher

    Data Science, Independent Research, Santa Monica, CA, USA 

  • Peter A McCullough

    Internal Medicine, Cardiology, Epidemiology, and Public Health, McCullough Foundation, Dallas, TX, USA 

References

Aarstad, J. & Kvitastein, O. A. (2023). Is there a link between the 2021 COVID-19 vaccination uptake in Europe and 2022 excess all-cause mortality?. Asian Pacific Journal of Health Sciences 10(1), 25–31. https://doi.org/10.20944/preprints202302.0350.v1

Abdulkader, M.A. Sr., & Merza, M. A. (2023). Immediate and long-term adverse events of COVID-19 vaccines: a one-year follow-up study from the Kurdistan Region of Iraq. Cureus 15, e47670. https://doi.org/10.7759/cureus.47670

Abou-Saleh, H., Abo-Halawa, B. Y., Younes, S., Younes, N., Al-Sadeq, D. W., Shurrab, F. M., et al. (2022). Neutralizing antibodies against SARS-CoV-2 are higher but decline faster in mRNA vaccinees compared to individuals with natural infection. Journal of Travel Medicine 29(8), taac130. https://doi.org/10.1093/jtm/taac130

Acevedo-Whitehouse, K. & Bruno, R. (2023). Potential health risks of mRNA-based vaccine therapy: A hypothesis. Medical Hypotheses 171, 111015. https://doi.org/10.1016/j.mehy.2023.111015

Adams, K., Riddles, J. J., Rowley, E. A. K., Grannis, S. J., Gaglani, M., Fireman, B., et al. (2023). Number needed to vaccinate with a COVID-19 booster to prevent a COVID-19-associated hospitalization during SARS-CoV-2 Omicron BA.1 variant predominance, December 2021-February 2022, VISION Network: a retrospective cohort study. The Lancet Regional Health Americas 23, 100530. https://doi.org/10.1016/j.lana.2023.100530

Adhikari, B, Bednash, JS., Horowitz, JC., Rubinstein, MP., Vlasova, AN. (2024) Brief research report: impact of vaccination on antibody responses and mortality from severe COVID-19. Frontiers in Immunology. 15, 1325243. https://doi.org/10.3389/fimmu.2024.1325243

Akinosoglou, K., Tzivaki, I., & Marangos, M. (2021). COVID-19 vaccine and autoimmunity: awakening the sleeping dragon. Clinical Immunology 226, 108721. https://doi.org/10.1016/j.clim.2021.108721

Ali, T., Mujawar, S., Sowmya, A. V., Saldanha, D., & Chaudhury, S. (2021). Dangers of mRNA vaccines. Industrial Psychiatry Journal 30, S291-3. https://doi.org/10.4103/0972-6748.328833

Allen, H., Tessier, E., Turner, C., Anderson, C., Blomquist, P., Simons, D., Løchen, A., et al. (2023). Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: national cohort study, England. Epidemiology and Infection 151, e58. https://doi.org/10.1017/S0950268823000420

Almas, T., Rehman, S., Mansour, E., Khedro, T., Alansari, A., Malik, J., et al. (2022). Epidemiology, clinical ramifications, and cellular pathogenesis of COVID-19 mRNA-vaccination-induced adverse cardiovascular outcomes: A state-of-the-heart review. Biomed Pharmacotherapy 149, 112843. https://doi.org/10.1016/j.biopha.2022.112843

Alqatari, S., Ismail, M., Hasan, M., Bukhari, R., Al Argan, R., Alwaheed, A., et al. (2023). Emergence of post COVID-19 vaccine autoimmune diseases: A single center study. Infect Drug Resist 16, 1263-1278. https://doi.org/10.2147/IDR.S394602

Altarawneh, H. N., Chemaitelly, H., Ayoub, H. H., Tang, P., Hasan, M. R., Yassine, H. M., et al. (2022). Effects of previous infection and vaccination on symptomatic Omicron infections. The New England Journal of Medicine 387(1), 21-34. https://doi.org/10.1056/NEJMoa2203965

Altman, P. M., Rowe, J., Hoy, W., Brady, G., Lefringhausen, A., Cosford, R., & Wauchope, B (2022). Did national security imperatives compromise COVID-19 vaccine safety? Trial Site News. Accessed on September 30, 2023 from https://www.trialsitenews.com/a/did-national-security-imperatives-compromise-covid-19-vaccine-safety-adfea242

Alu, A., Chen, L., Lei, H., Wei, Y., Tian, X., & Wei, X. (2022). Intranasal COVID-19 vaccines: from bench to bed. EBioMedicine 76, 103841. https://doi.org/10.1016/j.ebiom.2022.103841.

Annas, G. J. (2018). Beyond Nazi war Crimes experiments: The voluntary consent requirement of the Nuremberg Code at 70. American Journal of Public Health 108, 42-46. https://doi.org/10.2105/AJPH.2017.304103

Azim Majumder, M. A. & Razzaque, M. S. (2022). Repeated vaccination and 'vaccine exhaustion': relevance to the COVID-19 crisis. Expert Rev Vaccines 21, 1011-4. https://doi.org/10.1080/14760584.2022.2071705.

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., et al. (2020). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. The New England Journal of Medicine 384(5), 403-416. https://doi.org/10.1056/NEJMoa2035389

Banoun, H. (2023). mRNA: vaccine or gene therapy? The safety regulatory issues. International Journal of Molecular Sciences 24, 10514. https://doi.org/10.3390/ijms241310514

Bansal, S., Perincheri, S., Fleming, T., Poulson, C., Tiffany, B., Bremner, R. M., Mohanakumar, T. (2021). Cutting edge: Circulating exosomes with COVID spike protein are induced by BNT162b2 (Pfizer-BioNTech) vaccination prior to development of antibodies: A novel mechanism for immune activation by mRNA vaccines. Journal of Immunology 207(10), 2405-2410. https://doi.org/10.4049/jimmunol.2100637

Bar-On, Y. M., Goldberg, Y., Mandel, M., Bodenheimer, O., Amir, O., Freedman, L., et al. (2022). Protection by a fourth dose of BNT162b2 against omicron in Israel. The New England Journal of Medicine 386(18), 1712-1720. https://doi.org/10.1056/NEJMoa2201570

Baral, S., Chandler, R., Prieto, R. G., Gupta, S., Mishra, S., & Kulldorff, M. (2021). Leveraging epidemiological principles to evaluate Sweden's COVID-19 response. Annals of Epidemiology 54, 21-26. https://doi.org/10.1016/j.annepidem.2020.11.005

Barbari, A. (2021). COVID-19 vaccine concerns: fact or fiction? Experimental and Clincal Trannsplantation 19, 627-34. https://doi.org/10.6002/ect.2021.0056

Bardosh, K., Krug., A, Jamrozik, E., Lemmens, T., Keshavjee, S., Prasad, V., et al. (2024) COVID-19 vaccine boosters for young adults: a risk benefit assessment and ethical analysis of mandate policies at universities. Journal of Medical Ethics 50(2), 126-138. https://doi.org/10.1136/jme-2022-108449

Beattie, K. A. (2021). Worldwide Bayesian Causal Impact Analysis of Vaccine Administration on Deaths and Cases Associated with COVID-19: A BigData Analysis of 145 Countries. https://www.researchgate.net/publication/356248984_Worldwide_Bayesian_Causal_Impact_Analysis_of_Vaccine_Administration_on_Deaths_and_Cases_Associated_with_COVID-19_A_BigData_Analysis_of_145_Countries

Beatty, A. L., Peyser, N.D., Butcher, X. E., Cocohoba, J. M., Lin, F., Olgin, J. E., et al. (2021). Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA Network Open 1, 4(12), e2140364. https://doi.org/10.1001/jamanetworkopen.2021.40364

Benn, C.S., Schaltz-Buchholzer, F., Nielsen, S., Netea, M.G., & Aaby, P. (2023). Randomized clinical trials of COVID-19 vaccines: Do adenovirus-vector vaccines have beneficial non-specific effects? iScience 26(5), 106733. https://doi.org/10.1016/j.isci.2023.106733

Beeraka, N. M., Sukocheva, O. A., Lukina, E., Liu, J., & Fan, R. (2022). Development of antibody resistance in emerging mutant strains of SARS CoV-2: impediment for COVID-19 vaccines. Reviews in Medical Virology 32, e2346. https://doi.org/10.1002/rmv.2346.

Bhattacharya, J. & Kulldorff, M. (2023). We’re Fighting the COVID Censors Retrieved January 3, 2024, from https://thespectator.com/topic/were-fighting-the-covid-censors-censorship/

Bigay, J., Le Grand, R., Martinon, F., & Maisonnasse, P. (2022). Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Frontiers in Microbiology 13, 932408. https://doi.org/10.3389/fmicb.2022.932408

Biomedical Advanced Research and Development Authority. (2022). BARDA Strategic Plan, 2022-2026: Fortifying the Nation's Health Security. Washington, D.C. https://www.medicalcountermeasures.gov/media/38717/barda-strategic-plan-2022-2026.pdf

Blaylock, R. L. (2022). COVID update: What is the truth?.Surgical Neurology International 13, 167. https://doi.org/10.25259/SNI_150_2022

Bossche, G.V. (2023) The Inescapable Immune Escape Pandemic. Pierucci Publishing, Aspen, CO. https://www.boswellbooks.com/book/9781956257809

Brighton Collaboration (2020). Priority List of Adverse Events of Special Interest: COVID-19. Retrieved on October 16, 2023, from https://brightoncollaboration.org/priority-list-of-adverse-events-of-special-interest-covid-19/

Brisotto, G., Montico, M., Turetta, M., Zanussi, S., Cozzi, M. R., Vettori, R., et al. (2023). Integration of cellular and humoral immune responses as an immunomonitoring tool for SARS-CoV-2 vaccination in healthy and fragile subjects. Viruses 15(6), 1276. https://doi.org/10.3390/v15061276

Brogna, C., Cristoni, S., Marino, G., Montano, L., Viduto, V., Fabrowski, M., et al. (2023). Detection of recombinant spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. Proteomics - Clinical Applications 17(6), e2300048. https://doi.org/10.1002/prca.202300048

Brown, R. B. (2021). Outcome reporting bias in COVID-19 mRNA vaccine clinical trials. Medicina (Kaunas) 57, 199. https://doi.org/10.3390/medicina57030199

Buonocore, S. M., & van der Most, R. G. (2022). Narcolepsy and H1N1 influenza immunology a decade later: what have we learned? Frontiers in Immunology 902840. https://doi.org/10.3389/fimmu.2022.902840

Çalık, Ş., Demir, İ., Uzeken, E., Tosun, S., Özkan Özdemir, H., Coşkuner, S. A., & Demir, S. (2022). Investigation of the relationship between the immune responses due to COVID-19 vaccine and peripheral bloodlymphocyte subtypes of healthcare workers [Article in Turkish]. Mikrobiyology Bulletin 56, 729-39. https://pubmed.ncbi.nlm.nih.gov/36458718/

Cardozo, T. & Veazey, R. (2021). Informed consent disclosure to vaccine trial subjects of risk of COVID-19 vaccines worsening clinical disease. International Journal of Clinical Practice 75, e13795. https://doi.org/10.1111/ijcp.13795

Centers for Disease Control and Prevention (1999). Rotavirus Vaccine (RotaShield®) and Intussusception. Retrieved on October 16, 2023, from https://www.cdc.gov/vaccines/vpd-vac/rotavirus/vac-rotashield-historical.htm

Centers for Disease Control and Prevention (2020). Historical vaccine safety concerns. Retrieved on October 16, 2023, from https://www.cdc.gov/vaccinesafety/concerns/concerns-history.html

Chakraborty, C., Sharma, A. R., Bhattacharya, M., & Lee, S. S. (2022). A detailed overview of immune escape, antibody escape, partial vaccine escape of SARS-CoV-2 and their emerging variants with escape mutations. Frontiers in Immunology 13, 801522. https://doi.org/10.3389/fimmu.2022.801522.

Chapin-Bardales, J., Gee, J., & Myers, T. (2021). Reactogenicity following receipt of mRNA-based COVID-19 vaccines. JAMA 325, 2201-2. https://doi.org/10.1001/jama.2021.5374

Chapin-Bardales, J., Myers, T., Gee, J., Shay, D. K., Marquez, P., Baggs, J., et al. (2021b). Reactogenicity within 2 weeks after mRNA COVID-19 vaccines: Findings from the CDC v-safe surveillance system. Vaccine 39(48), 7066-7073. https://doi.org/10.1016/j.vaccine.2021.10.019

Chenchula, S., Vidyasagar, K., Pathan, S., Sharma, S., Chavan, M. R., Bhagavathula, A. S., et al. (2023). Global prevalence and effect of comorbidities and smoking status on severity and mortality of COVID-19 in association with age and gender: a systematic review, meta-analysis and meta-regression. Scientific Reports 13(1), 6415. https://doi.org/10.1038/s41598-023-33314-9

Cheng, C. Y., Baritussio, A., Giordani, A. S., Iliceto, S., Marcolongo, R., Caforio, A. L. P. Myocarditis in systemic immune-mediated diseases: Prevalence, characteristics and prognosis. A systematic review. Autoimmunity Reviews 2022, 21(4):103037. https://doi.org/10.1016/j.autrev.2022.103037

Chevaisrakul, P., Lumjiaktase, P., Kietdumrongwong, P., Chuatrisorn, I., Chatsangjaroen, P., & Phanuphak, N. (2023.) Hybrid and herd immunity 6 months after SARS-CoV-2 exposure among individuals from a community treatment program. Scientific Reports 13, 763. https://doi.org/10.1038/s41598-023-28101-5

Classen, B. (2021). US COVID-19 vaccines proven to cause more harm than good based on pivotal clinical trial data analyzed using the proper scientific endpoint, “all cause severe morbidity”. Trends in Internal Medicine 1, 1-6. (pdf)

Cohen, J. (2020). ‘Absolutely remarkable': No one who got Moderna's vaccine in trial developed severe COVID-19. Retrieved October 16, 2023, from https://www.science.org/content/article/absolutely-remarkable-no-one-who-got-modernas-vaccine-trial-developed-severe-covid-19

Conklin, L., Hviid, A., Orenstein, W. A., Pollard, A. J., Wharton, M., & Zuber, P (2021). Vaccine safety issues at the turn of the 21st century. BMJ Global Health 6, e004898. https://doi.org/10.1136/bmjgh-2020-004898

Cosentino, M. & Marino, F. (2022). Understanding the pharmacology of COVID-19 mRNA vaccines: playing dice with the spike? International Journal of Molecular Sciences 23, 10881. https://doi.org/10.3390/ijms231810881

COVID-19 Vaccine Surveillance Report. (2022). Week 10. UK Health Security Agency. https://assets.publishing.service.gov.uk/media/623087498fa8f56c23967166/Vaccine_surveillance_report_-_week_10.pdf

Debes, A. K., Xiao, S., Colantuoni, E., Egbert, E. R., Caturegli, P., Gadala, A., Milstone, A. M. (2021). Association of vaccine type and prior SARS-CoV-2 infection with symptoms and antibody measurements following vaccination among health care workers. JAMA Internal Medicine 181, 1660–1662. https://doi.org/10.1001/jamainternmed.2021.4580

Demasi, M. (2021). Are adverse events in COVID-19 vaccine trials under-reported? Retrieved October 16, 2023, from https://maryannedemasi.com/publications/f/are-adverse-events-in-covid-19-vaccine-trials-under-reported

Dhama, K., Nainu, F., Frediansyah, A., Yatoo, M. I., Mohapatra, R. K., Chakraborty, S., et al. (2023). Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. Journal of Infection and Public Health 16(1), 4-14. https://doi.org/10.1016/j.jiph.2022.11.024

Doshi P. (2021). Pfizer and Moderna’s “95% effective” vaccines—we need more details and the raw data. Retrieved October 16, 2023, from https://blogs.bmj.com/bmj/2021/01/04/peter-doshi-pfizer-and-modernas-95-effective-vaccines-we-need-more-details-and-the-raw-data

Doshi, P. (2020). Will COVID-19 vaccines save lives? Current trials aren't designed to tell us. BMJ 371, m4037. https://doi.org/10.1136/bmj.m4037

Doshi, P. (2021b). COVID-19 vaccines: in the rush for regulatory approval, do we need more data? BMJ 373, n1244. https://doi.org/10.1136/bmj.n1244

Dudley, M. Z., Schwartz, B., Brewer, J., Kan, L., Bernier, R., Gerber, J. E., et al. (2023). COVID-19 vaccination attitudes, values, intentions: US parents for their children, September 2021. Vaccine 41(49), 7395-7408. https://doi.org/10.1016/j.vaccine.2023.11.002

Duffy., K, Arangundy-Franklin, S., and Holliger, P. (2020). Modified nucleic acids: Replication, evolution, and next-generation therapeutics. BMC Biology 18(1), 112. https://doi.org/10.1186/s12915-020-00803-6

Dumonteil, E. & Herrera, C. (2020). Polymorphism and selection pressure of SARS-CoV-2 vaccine and diagnostic antigens: implications for immune evasion and serologic diagnostic performance. Pathogens 9, 584. https://doi.org/10.3390/pathogens9070584

Echaide, M., Labiano, I., Delgado, M., Fernández de Lascoiti, A., Ochoa, P., et al. (2022). Immune Profiling Uncovers Memory T-Cell Responses with a Th17 Signature in Cancer Patients with Previous SARS-CoV-2 Infection Followed by mRNA Vaccination. Cancers (Basel) 14(18), 4464. https://doi.org/10.3390/cancers14184464

European Medicines Agency (2021). Assessment Report Comirnaty. Amsterdam, The Netherlands. Retrieved on December 20, 2023 from https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf

European Medicines Agency (2021b). Signal assessment report on embolic and thrombotic events (SMQ) with COVID-19 Vaccine (ChAdOx1-S [recombinant]) – COVID-19 Vaccine AstraZeneca (Other viral vaccines). EPITT no:19683. https://www.ema.europa.eu/en/documents/prac-recommendation/signal-assessment-report-embolic-thrombotic-events-smq-covid-19-vaccine-chadox1-s-recombinant-covid-19-vaccine-astrazeneca-other-viral-vaccines_en.pdf

European Medicines Agency. (2024). Vaxzevria (previously COVID-19 Vaccine AstraZeneca). https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca

Eythorsson, E., Runolfsdottir, H. L., Ingvarsson, R. F., Sigurdsson, M. I., & Palsson, R. (2022). Rate of SARS-CoV-2 reinfection during an omicron wave in Iceland. JAMA Network Open 5(8), e2225320. https://doi.org/10.1001/jamanetworkopen.2022.25320

Faksova, K., Walsh, D., Jiang, Y., Griffin, J., Phillips, A., Gentile, A., et al. (2024). COVID-19 vaccines and adverse events of special interest: A multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals. Vaccine 42(9), 2200-2211. https://doi.org/10.1016/j.vaccine.2024.01.100

FDA. (2022). Transfer of Therapeutic Biological Products to the Center for Drug Evaluation and Research; Content current as of: 03/07/2022. https://www.fda.gov/combination-products/jurisdictional-information/transfer-therapeutic-biological-products-center-drug-evaluation-and-research

FDA Briefing Document (2020). Vaccines and related biological products advisory committee, December 10, 2020. Pfizer-BioNTech COVID-19 Vaccine. US Food and Drug Administration, White Oak, MD. https://www.fda.gov/media/144245/download

Feng, A., Obolski, U., Stone, L., & He, D. (2022). Modelling COVID-19 vaccine breakthrough infections in highly vaccinated Israel-the effects of waning immunity and third vaccination dose. PLOS Global Public Health 2, e0001211. https://doi.org/10.1371/journal.pgph.0001211

Fenton, N. (2024). How many deaths were caused by the COVID vaccines? (2023). Retrieved on February 26, 2024, from https://wherearethenumbers.substack.com/p/how-many-deaths-were-caused-by-the

Fenton, N. E., Neil, M., & McLachlan, S. (2021). Paradoxes in the reporting of COVID19 vaccine effectiveness: Why current studies (for or against vaccination) cannot be trusted and what we can do about it. ResearchGate. https://doi.org/10.13140/RG.2.2.32655.30886

Finley, A. (2023). How ‘preapproved narratives’ corrupt science. WSJ Opinion. https://www.wsj.com/articles/how-preapproved-narratives-corrupt-science-false-studies-covid-climate-change-5bee0844

Fischhoff, B., Brewer, N., & Downs, J. (ed). (2011). Communicating risks and benefits: An evidence-based user's guide. US Department of Health and Human Services, Silver Spring, MA. https://www.fda.gov/about-fda/reports/communicating-risks-and-benefits-evidence-based-users-guide

Fraiman, J., Erviti, J., Jones, M., Greenland, S., Whelan, P., Kaplan, R. M., & Doshi, P. (2022). Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine 40, 5798-805. https://doi.org/10.1016/j.vaccine.2022.08.036

Franchi, F., & Tomsic, J. (2023). Comments on Kämmerer, et al. (2023) regarding RT-PCR Testing. International Journal of Vaccine Theory, Practice, and Research, 3(1). https://doi.org/10.56098/ijvtpr.v3i1.81

Fung, K., Jones, M., & Doshi, P. (2023). Sources of bias in observational studies of covid-19 vaccine effectiveness. Journal of Evaluation in Clinical Practice 30(1), 30-36. https://doi.org/10.1111/jep.13839

Gallais, F., Gantner, P., Bruel, T., Velay, A., Planas, D., Wendling, M. J., et al. (2021). Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. EBioMedicine 71, 103561. https://doi.org/10.1016/j.ebiom.2021.103561

Gao, F. X., Wu, R. X., Shen, M. Y., Huang, J. J., Li, T. T., Hu, C., et al. (2022). Extended SARS-CoV-2 RBD booster vaccination induces humoral and cellular immune tolerance in mice. iScience 25(12), 105479. https://doi.org/10.1016/j.isci.2022.105479.

Gao, J., Feng, L., Li, Y., Lowe, S., Guo, Z., Bentley, R.,et al. (2023). Systematic review and meta-analysis of the association between SARS-CoV-2 vaccination and myocarditis or pericarditis. American Journal of Preventive Medicine 64(2), 275-284. https://doi.org/10.1016/j.amepre.2022.09.002

Gartlan, C., Tipton, T., Salguero, F.J., Sattentau, Q., Gorringe, A., & Carroll, M.W. (2022). Vaccine-associated enhanced disease and pathogenic human coronaviruses. Frontiers in Immunology 13, 882972. https://doi.org/10.3389/fimmu.2022.882972

Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M. et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents 56(1), 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949

Gazit, S., Shlezinger, R., Perez, G., Lotan, R., Peretz, A., Ben-Tov, A., et al. (2022). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) naturally acquired immunity versus vaccine-induced immunity, Reinfections versus breakthrough infections: A retrospective cohort study. Clinical Infectious Diseases 75(1), e545-e551. https://doi.org/10.1093/cid/ciac262

Giannotta, G., Murrone, A., & Giannotta, N. (2023). COVID-19 mRNA vaccines: the molecular basis of some adverse events. Vaccines (Basel) 11, 747. https://doi.org/10.3390/vaccines11040747

Godlee, F. (2021). A strong pandemic response relies on good data. BMJ 375, n2668. https://doi.org/10.1136/bmj.n2668

Gomes, I. A., Soares, P., Rocha, J. V., Gama, A., Laires, P. A., Moniz, M., et al. (2022) Factors Associated with COVID-19 Vaccine Hesitancy after Implementation of a Mass Vaccination Campaign. Vaccines (Basel) 10(2), 281. https://doi.org/10.3390/vaccines10020281

Gøtzsche, P. C. (2020). Vaccines: Truth, lies, and controversy. Skyhorse Publishing, New York. https://www.skyhorsepublishing.com/9781510762190/vaccines/

Gøtzsche, P. C. (2022). Made in China: the coronavirus that killed millions of people. Indian Journal of Medical Ethics VII, 254. https://doi.org/10.20529/IJME.2021.098

Gøtzsche, P. C. & Demasi, M. (2022). Serious harms of the COVID-19 vaccines: a systematic review. medRxiv Preprint. https://doi.org/10.1101/2022.12.06.22283145

Gøtzsche, P.C. (2013). Deadly medicines and organized crime: How big pharma has corrupted health care. CRC Press. Boca Raton, FL. https://www.routledge.com/Deadly-Medicines-and-Organised-Crime-How-Big-Pharma-Has-Corrupted-Healthcare/Gotzsche/p/book/9781846198847

Gould, V. M., Francis, J. N., Anderson, K. J., Georges, B., Cope, A. V., & Tregoning, J. S. (2017). Nasal IgA provides protection against human influenza challenge in volunteers with low serum influenza antibody titre. Frontiers in Microbiology 8, 900. https://doi.org/10.3389/fmicb.2017.00900.

Graham, S. & Lane, T. (2018). Journal publication ethics and implications for life science researchers: a COPE perspective. Emergency Topics in Life Sciences 2(6), 763–767. https://doi.org/10.1042/ETLS20180164

Guerriaud, M. & Kohli, E. (2022). RNA-based drugs and regulation: Toward a necessary evolution of the definitions issued from the European Union legislation. Frontiers in Medicine (Lausanne) 9, 1012497. https://doi.org/10.3389/fmed.2022.1012497

Gulbrandsen, T. A., Neil, M., & Fenton, N. (2023). Anomalous patterns of mortality and morbidity in Pfizer’s COVID-19 vaccine trial. Retrieved on October 20, 2023, from https://wherearethenumbers.substack.com/p/anomalous-patterns-of-mortality-and

Gutschi, M. (Director). (2022, November 2). Quality issues with mRNA COVID vaccine production. https://www.bitchute.com/video/muB0nrznCAC4/

Hall, V. J., Foulkes, S., Charlett, A., Atti, A., Monk, E. J. M., Simmons, R., et al. (2021). SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). The Lancet 397(10283), 1459-1469. https://doi.org/10.1016/S0140-6736(21)00675-9

Harvey, R. A., Rassen, J. A., Kabelac, C. A., Turenne, W., Leonard, S., Klesh, R., et al. (2021). Association of SARS-CoV-2 seropositive antibody test with risk of future infection. JAMA Internal Medicine 181(5), 672-679. https://doi.org/10.1001/jamainternmed.2021.0366

Haslam, A. & Prasad, V. (2023). A comprehensive analysis of articles submitted to preprint servers from one laboratory (VKPrasad Lab at UCSF): Download statistics, rates of rejection, and reasons for rejection: Are preprint servers acting fairly or playing politics? Zenodo preprint. https://doi.org/10.5281/zenodo.8179013

Hatchard, G. (2022). NZ Ministry of Health data shows triple vaccinated are now more vulnerable to COVID infection and hospitalisation than the unvaccinated. Daily Exposé. https://expose-news.com/2022/04/06/nz-moh-data-triple-vaccinated-most-vulnerable-covid/

Hazell, L. & Shakir, S. A. (2006). Under-reporting of adverse drug reactions: A systematic review. Drug Safety 29, 385-96. https://doi.org/10.2165/00002018-200629050-00003

Healy, D., Germán Roux, A., & Dressen, B. (2023). The coverage of medical injuries in company trial informed consent forms. International Journal of Risk and Safety in Medicine 34, 121-8. https://doi.org/10.3233/JRS-220043

Held, K. S. (2020). COVID-19 statistics and facts: Meaningful or a means of manipulation? Journal of American Physicians and Surgeons 25(3), 70-72. https://jpands.org/vol25no3/held.pdf

Heinz, F. X. & Stiasny, K. (2021). Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines 6, 104. https://doi.org/10.1038/s41541-021-00369-6

Ho, L. L. Y., Schiess G. H. A., Miranda P., Weber G., Astakhova K. (2024) Pseudouridine and N1-methylpseudouridine as potent nucleotide analogues for RNA therapy and vaccine development. RSC Chemical Biology; 5(5):418-425. https://doi.org/10.1039/D4CB00022F

Horowitz, D. (2023). Confidential Pfizer document shows the company observed 1.6 million adverse events covering nearly every organ system. Retrieved on October 16, 2023, from https://www.conservativereview.com/horowitz-confidential-pfizer-document-shows-the-company-observed-1-6-million-adverse-events-covering-nearly-every-organ-system-2661316948.html

Hulscher, N., Hodkinson, R., Makis, W., & McCullough, P. A. (2024). Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis. ESC Heart Failure. Epub ahead of print. https://doi.org/10.1002/ehf2.14680

Ioannidis, J. P. (2021). Infection fatality rate of COVID-19 inferred from seroprevalence data. Bulletin of the World Health Organization 99, 19-33F. https://doi.org/10.2471/BLT.20.265892

Ioannidis, J. P. A., Berkwits, M., Flanagin, A., & Bloom, T. (2023). Peer Review and Scientific Publication at a Crossroads: Call for Research for the 10th International Congress on Peer Review and Scientific Publication. JAMA 330(13), 1232-1235. https://doi.org/10.1001/jama.2023.17607

Irrgang, P., Gerling, J., Kocher, K., Lapuente, D., Steininger, P., Habenicht, K., et al. (2023). Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Science Immunology 8(79), eade2798. https://doi.org/10.1126/sciimmunol.ade2798

Islam, N., Shkolnikov, V. M., Acosta, R. J., Klimkin, I., Kawachi, I., Irizarry, R. A., et al. (2021). Excess deaths associated with covid-19 pandemic in 2020: age and sex disaggregated time series analysis in 29 high income countries. BMJ 373, n1137. https://doi.org/10.1136/bmj.n1137

Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., & 28 more. (2020). An mRNA Vaccine against SARS-CoV-2—Preliminary Report. New England Journal of Medicine, 383(20), 1920–1931. https://doi.org/10.1056/NEJMoa2022483

Jeet Kaur, R., Dutta, S., Charan, J., Bhardwaj, P., Tandon, A., Yadav, D., et al. (2021). Cardiovascular Adverse Events Reported from COVID-19 Vaccines: A Study Based on WHO Database. International Journal of General Medicine 14, 3909-3927. https://doi.org/10.2147/IJGM.S324349

Jiang, S. (2020). Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature 579, 321. https://doi.org/10.1038/d41586-020-00751-9

Johnson, R. M., Doshi, P., & Healy, D. (2020). COVID-19: should doctors recommend treatments and vaccines when full data are not publicly available? BMJ 370, m3260. https://doi.org/10.1136/bmj.m3260

Kämmerer, U., Pekova, S., Klement, R. J., Louwen, R., Borger, P., & Steger, K. (2023a). Response to Comments on Kämmerer, et al. (2023) regarding RT-PCR Testing. International Journal of Vaccine Theory, Practice, and Research, 3(1). https://doi.org/10.56098/ijvtpr.v3i1.82

Kämmerer, U., Pekova, S., Klement, R., Louwen, R., Borger, P., & Steger, K. (2023b). RT-PCR test targeting the conserved 5’-UTR of SARS-CoV-2 overcomes shortcomings of the first WHO-recommended RT-PCR test. International Journal of Vaccine Theory, Practice, and Research, 3(1), Article 1. https://doi.org/10.56098/ijvtpr.v3i1.71

Kaplan, K. M., Marder, D. C., Cochi, S. L., & Preblud, S. R (1988). Mumps in the workplace. Further evidence of the changing epidemiology of a childhood vaccine-preventable disease. JAMA 260(10), 1434-8. https://doi.org/10.1001/jama.260.10.1434

Kim, K. Q., Burgute, B. D., Tzeng, S. C., Jing, C., Jungers, C., Zhang, J., et al. (2022) N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Reports 40(9):111300. https://doi.org/10.1016/j.celrep.2022.111300

Kirsch, S. (2024). Our paper critical of the COVID vaccines will be retracted by Cureus! Retrieved on May 8, 2024 from https://kirschsubstack.com/p/our-paper-critical-of-the-covid-vaccines

Kitagawa, H., Kaiki, Y., Sugiyama, A., Nagashima, S., Kurisu, A., Nomura, T., et al. (2022). Adverse reactions to the BNT162b2 and mRNA-1273 mRNA COVID-19 vaccines in Japan. Journal of Infection and Chemotherapy 28(4), 576-581. https://doi.org/10.1016/j.jiac.2021.12.034

Klingel, H., Krüttgen. A., Imöhl. M., & Kleines. M. (2023). Humoral immune response to SARS-CoV-2 mRNA vaccines is associated with choice of vaccine and systemic adverse reactions. Clinical and Experimental Vaccine Research 12(1), 60-69. https://doi.org/10.7774/cevr.2023.12.1.60

Kobashi, Y., Shimazu, Y., Kawamura, T., Nishikawa, Y., Omata, F., Kaneko, Y., et al. (2022). Factors associated with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein antibody titer and neutralizing activity among healthcare workers following vaccination with the BNT162b2 vaccine. PLoS ONE 17, e0269917. https://doi.org/10.1371/journal.pone.0269917

Kohn, L. T., Corrigan, J. M., & Donaldson, M. S. (2000). To err is human: Building a safer health system. The National Academies Press, Washington, DC; 2000. https://doi.org/10.17226/9728

Kory, P. & McCarthy, J. (2023). War on ivermectin: The medicine that saved millions and could have ended the pandemic. Skyhorse Publishing, New York. https://www.skyhorsepublishing.com/9781510773868/the-war-on-ivermectin/

Kuldorff, M. (2022). Have people been given the wrong vaccine? Retrieved on October 16, 2023, from https://brownstone.org/articles/have-people-been-given-the-wrong-vaccine/

Kyriakopoulos, A.M., Nigh, G, McCullough, P.A., & Seneff S. (2024). Oncogenesis and autoimmunity as a result of mRNA COVID-19 vaccination. Authorea Preprint. April 23, 2024. https://doi.org/10.22541/au.171387387.73158754/v1

Lalani, H. S., Nagar, S., Sarpatwari, A., Barenie, R. E., Avorn, J., Rome, B. N., & Kesselheim, A. S. (2023). US public investment in development of mRNA covid-19 vaccines: retrospective cohort study. BMJ 380, e073747. https://doi.org/10.1136/bmj-2022-073747

Lataster, R. (2024). Reply to Fung et al. on COVID-19 vaccine case-counting window biases overstating vaccine effectiveness. Journal of Evaluation in Clinical Practice 30(1): 82-85. https://doi.org/10.1111/jep.13892

Lataster, R. (2024b). How the adverse effect counting window affected vaccine safety calculations in randomised trials of COVID-19 vaccines. Journal of Evaluation in Clinical Practice. Epub ahead of print. https://doi.org/10.1111/jep.13962

Lavelle, E. C. & Ward, R. W. (2022). Mucosal vaccines - fortifying the frontiers. Nature Reviews in Immunology 22, 236-50. https://doi.org/10.1038/s41577-021-00583-2.

Lazareva, M., Renemane, L., Vrublevska, J., Rancans, E. (2024) New-onset psychosis following COVID-19 vaccination: a systematic review. Frontiers in Psychiatry 15, 1360338. https://doi.org/10.3389/fpsyt.2024.1360338

Lazarus, R., Baos, S., Cappel-Porter, H., Carson-Stevens, A., Clout, M., Culliford, L., et al. (2021). Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): a multicentre, randomised, controlled, phase 4 trial. The Lancet 398(10318), 2277-2287. https://doi.org/10.1016/S0140-6736(21)02329-1

Leake, J. & McCullough, P. A. (2022). The courage to face COVID-19: Preventing hospitalization and death while battling the bio-pharmaceutical complex. Skyhorse Publishing. New York. https://www.skyhorsepublishing.com/9781510776807/the-courage-to-face-covid-19/

Levy, I., Levin, E. G., Olmer, L., Regev-Yochay, G., Agmon-Levin, N., Wieder-Finesod, A., et al. (2022). Correlation between adverse events and antibody titers among healthcare workers vaccinated with BNT162b2 mRNA COVID-19 vaccine. Vaccines 10, 1220. https://doi.org/10.3390/vaccines10081220

Lipsitch, M. & Kahn, R. (2021). Interpreting vaccine efficacy trial results for infection and transmission. Vaccine 39, 4082-8. https://doi.org/10.1016/j.vaccine.2021.06.011

León, T.M., V. Dorabawila, L. Nelson, E. Lutterloh, U.E. Bauer, B. Backenson, M.T., et al. (2022). COVID-19 cases and hospitalizations by COVID-19 vaccination status and previous COVID-19 diagnosis—California and New York, May–November 2021. MMWR. Morbidity and Mortality Weekly Report 71(4), 125–131. https://doi.org/10.15585/mmwr.mm7104e1

López-Cortés, G. I., Palacios-Pérez, M., Veledíaz, H. F., Hernández-Aguilar, M., López-Hernández, G. R., Zamudio, G. S., & José, M. V. (2022). The spike protein of SARS-CoV-2 is adapting because of selective pressures. Vaccines (Basel) 10, 864. https://doi.org/10.3390/vaccines10060864.

Lv, H., Wu, N. C., Tsang, O. T., Yuan, M., Perera, R. A. P. M., Leung, W. S., So, R. T. Y., Chan, J. M. C., Yip, G. K., Chik, T. S. H., Wang, Y., Choi, C. Y. C., Lin, Y., Ng, W. W., Zhao, J., Poon, L. L. M., Peiris, J. S. M., Wilson, I. A., & Mok, C. K. P. (2020). Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. bioRxiv Preprint. https://doi.org/10.1101/2020.03.15.993097.

Lyke, K. E., Atmar, R. L., Islas, C. D., Posavad, C. M., Szydlo, D., Paul Chourdhury, R., et al.; DMID 21-0012 Study Group. (2022). Rapid decline in vaccine-boosted neutralizing antibodies against SARS-CoV-2 Omicron variant. Cell Reports Medicine 3(7), 100679. https://doi.org/10.1016/j.xcrm.2022.100679

Madewell, Z. J., Yang, Y., Longini, I. M. Jr., Halloran, M. E., & Dean, N. E. (2020). Household transmission of SARS-CoV-2: a systematic review and meta-analysis. JAMA Network Open 2020, 3, e2031756. https://doi.org/10.1001/jamanetworkopen.2020.31756

Maeda, M., Murata, F., & Fukuda, H. (2023). Effect of COVID-19 vaccination on household transmission of SARS-CoV-2 in the Omicron era: the vaccine effectiveness, networking, and universal safety (VENUS) study. International Journal of Infectious Diseases 134, 200-6. https://doi.org/10.1016/j.ijid.2023.06.017

Majzoub, R. A., Alrofaie, O. H., Almotreb, L. K., Alateeq, S. K., & Bin Obaid, F. R. (2023). Parental hesitancy and attitude concerning COVID-19 vaccine and its side effects in Saudi Arabia, Eastern region. Cureus 15, e48776. https://doi.org/10.7759/cureus.48776

Malhotra, A. (2022). Curing the pandemic of misinformation on COVID-19 mRNA vaccines through real evidence-based medicine - Part 1. Journal of Insulin Resistance 5(1), 71. https://doi.org/10.4102/jir.v5i1.71. PMCID: PMC9557944

Malhotra, A. (2022). Curing the pandemic of misinformation on COVID-19 mRNA vaccines through real evidence-based medicine - Part 2. Journal of Insulin Resistance 5(1), 72. https:;/doi.org/10.4102/jir.v5i1.72

Mandavilli, A. (2024). Thousands believe COIVD vaccines harmed them. Is anyone listening? New York Times. May 3. https://www.nytimes.com/2024/05/03/health/covid-vaccines-side-effects.html

Masterjohn, C. (2022). Did the Pfizer trial show the vaccine increases heart disease deaths? Retrieved on October 16, 2023, from https://chrismasterjohnphd.substack.com/p/did-the-pfizer-trial-show-the-vaccine

McCabe, G., Sahni, D. S. & Ramsaha, S. (2021). A systematic review on the therapeutic relevance of hydroxychloroquine/chloroquine in the management of COVID-19. Indian Journal of Community Medicine 46(3), 380-388. https://doi.org/10.4103/ijcm.IJCM_539_20

McCarthy M. W. (2022). Original antigen sin and COVID-19: implications for seasonal vaccination. Expert Opinion on Biological Therapy 22, 1353-8. https://doi.org/10.1080/14712598.2022.2137402.

McCullough P. A. (2020) The great gamble of COVID-19 vaccine development. The Hill. 8/17/20. https://thehill.com/opinion/healthcare/512191-the-great-gamble-of-covid-19-vaccine-development/

McCullough, P. A. (2023). America's long, expensive, and deadly love affair with mRNA. Retrieved on March 15, 2023, from https://petermcculloughmd.substack.com/p/americas-long-expensive-and-deadly

McCullough, P. A. (2024). BREAKING--Springer Nature Cureus journal of medical science violates committee on publication ethics (COPE) guidelines. Retrieved on May 8, 2024 from https://petermcculloughmd.substack.com/p/breaking-springer-nature-cureus-journal

Mead, M. N., Seneff, S., Wolfinger, R., Rose, J., Denhaerynck, K., Kirsch, S., & McCullough, P. A. (2024). Retracted: COVID-19 mRNA vaccines: Lessons learned from the registrational trials and global vaccination campaign. Cureus 16(1), e52876. https://doi.org/10.7759/cureus.52876

Mehra, M. R., Desai, S. S., Ruschitzka, F., Patel, A. N. (2020). RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. The Lancet S0140-6736(20), 31180-6. https://doi.org/10.1016/S0140-6736(20)31180-6 Retraction in: The Lancet. 2020 Jun 5: null. Erratum in: The Lancet. 2020 May 30; Erratum in: The Lancet. 2020 Jul 18; 396(10245), e2-e3.

Menegale, F., Manica, M., Zardini, A., Guzzetta, G., Marziano, V., d'Andrea, V., et al. (2023). Evaluation of waning of SARS-CoV-2 vaccine-induced immunity: A systematic review and meta-analysis. JAMA Network Open 6(5), e2310650. https://doi.org/10.1001/jamanetworkopen.2023.10650

Meo, S. A., Bukhari, I. A., Akram, J., Meo, A. S., & Klonoff, D. C. (2021). COVID-19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines. European Review for Medical and Pharmacological Sciences 25, 1663-9. https://doi.org/10.26355/eurrev_202102_24877

Mettelman, R. C., Allen, E. K., & Thomas, P. G. (2022). Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 55, 749-80. https://doi.org/10.1016/j.immuni.2022.04.013.

Michels, C., Perrier, D., Kunadhasan, J., Clark, E., Gehrett, J., Gehrett, B., et al. (2023). Forensic analysis of the 38 subject deaths in the 6- month interim report of the Pfizer/BioNTech BNT162b2 mRNA vaccine clinical trial. International Journal of Vaccine Theory, Practice, and Research 3, 973-1009. https://doi.org/10.56098/International Journal of Vaccine Theory, Practice, and Research .v3i1.85

Moderna, Inc. (2020). Moderna clinical study protocol: A phase 3, randomized, stratified, observer-blind, placebo-controlled study to evaluate the efficacy, safety, and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine in adults aged 18 years and older. Protocol No. mRNA-1273-P301. Retrieved on December 20, 2023, from https://www.modernatx.com/sites/default/files/mRNA-1273-P301-Protocol.pdf

Montano, D. (2021). Frequency and associations of adverse reactions of COVID-19 vaccines reported to pharmacovigilance systems in the European Union and the United States. Frontiers in Public Health 9, 756633. https://doi.org/10.3389/fpubh.2021.756633

Mörl, F., Günther, M., & Rockenfeller, R. (2022). Is the harm-to-benefit ratio a key criterion in vaccine approval? Frontiers in Medicine (Lausanne) ) 9, 879120. https://doi.org/10.3389/fmed.2022.879120

Mostaghimi, D., Valdez, C. N., Larson, H. T., Kalinich, C. C., & Iwasaki, A. (2022). Prevention of host-to-host transmission by SARS-CoV-2 vaccines. The Lancet Infectious Diseases 22, e52-8. https://doi.org/10.1016/S1473-3099(21)00472-2

Murphy, S. L., Kochanek, K. D., Xu, J., & Arias, E. (2021). Mortality in the United States, 2020. NCHS Data Brief No. 427. https://www.cdc.gov/nchs/products/databriefs/db427.htm

Mulroney, T. E., Pöyry, T., Yam-Puc, J. C., Rust, M., Harvey, R. F., Kalmar, L., Horner, E., Booth, L., Ferreira, A. P., Stoneley, M., Sawarkar, R., Mentzer, A. J., Lilley, K. S., Smales, C. M., von der Haar, T., Turtle, L., Dunachie, S., Klenerman, P., Thaventhiran, J. E. D., & Willis, A. E. (2023). N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature, 625(7993), Article 7993. https://doi.org/10.1038/s41586-023-06800-3

Naaber, P., Tserel, L., Kangro, K., Sepp, E., Jürjenson, V., Adamson, A., et al. (2021). Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. The Lancet Regional Health - Europe 10, 100208. https://doi.org/10.1016/j.lanepe.2021.100208

Naggie, S., Boulware, D. R., Lindsell, C. J., Stewart, T. G., Gentile, N. et al. (2022). Accelerating COVID-19 therapeutic interventions and vaccines (ACTIV-6) study group and investigators. Effect of ivermectin vs placebo on time to sustained recovery in outpatients with mild to moderate COVID-19: A randomized clinical trial. JAMA 2022;328(16):1595-1603. https://doi.org/10.1001/jama.2022.18590

Nahab, F., Bayakly, R., Sexton, M. E., Lemuel-Clarke, M., Henriquez, L, Rangaraju, S., & Ido, M. (2023). Factors associated with stroke after COVID-19 vaccination: a statewide analysis. Frontiers in Neurology 14, 1199745. https://doi.org/10.3389/fneur.2023.1199745

Nance, K. D. & Meier, J. L. (2021). Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Central Science 7, 748-56. https://doi.org/10.1021/acscentsci.1c00197

National Academies of Sciences, Engineering, and Medicine. (2024). Evidence review of the adverse effects of COVID-19 vaccination and intramuscular vaccine administration. Washington, DC: The National Academies Press. https://doi.org/10.17226/27746

National Center for Immunization and Respiratory Diseases (NCIRD) (2021). Science brief: COVID-19 vaccines and vaccination. CDC COVID-19 Science Briefs [Internet]. Division of Viral Diseases, Atlanta, GA. https://www.ncbi.nlm.nih.gov/books/NBK570435/

National Institutes of Health (2022). Vaccine-induced immune response to omicron wanes substantially over time. Retrieved on October 16, 2023, from https://www.nih.gov/news-events/news-releases/vaccine-induced-immune-response-omicron- wanes-substantially-over-time

Nayak, R. K., Lee, C. C., Avorn, J., & Kesselheim, A. S. (2021). Public-sector contributions to novel biologic drugs. JAMA Internal Medicine 181, 1522-5. https://doi.org/10.1001/jamainternmed.2021.3720

Neil, M. & Fenton, N. (2023). The Very Best of Cheap Trick. Where Are the Numbers? Substack. Accessed on April 12 from https://wherearethenumbers.substack.com/p/the-very-best-of-cheap-trick

Neil, M., Fenton, N. E., & McLachlan, S. (2024). The extent and impact of vaccine status miscategorisation on covid-19 vaccine efficacy studies. MedRxiv Preprint. https://doi.org/10.1101/2024.03.09.24304015

Neil, M., Fenton, N. E., Smalley, J., & Rose, J. (2022). Official mortality data for England suggest systematic miscategorisation of vaccine status and uncertain effectiveness of COVID-19 vaccination. ResearchGate. https://doi.org/10.13140/RG.2.2.28055.09124.

New York State Department of Health (2023). The science behind vaccine research and testing. Retrieved on October 16, 2023, from https://www.health.ny.gov/prevention/immunization/vaccine_safety/science.htm

Noori, M., Nejadghaderi, S. A., & Rezaei, N. (2022). "Original antigenic sin": a potential threat beyond the development of booster vaccination against novel SARS-CoV-2 variants. Infection Control & Hospital Epidemiology 43, 1091-2. https://doi.org/10.1017/ice.2021.199.

Nyström, S., & Hammarström, P. (2022). Amyloidogenesis of SARS-CoV-2 spike protein. Journal of the American Chemical Society, 144(20), 8945–8950. https://doi.org/10.1021/jacs.2c03925

Offit, P. A. (2023). Bivalent COVID-19 vaccines - a cautionary tale. The New England Journal of Medicine 388, 481-3. https://doi.org/10.1056/NEJMp2215780

Olliaro, P., Torreele, E., & Vaillant, M. (2021). COVID-19 vaccine efficacy and effectiveness-the elephant (not) in the room. Lancet Microbe 2, e279-80. https://doi.org/10.1016/S2666-5247(21)00069-0

Oller, J., & Shaw, C. A. (2020). Brave new world: Omens and opportunities in the age of COVID-19. International Journal of Vaccine Theory, Practice, and Research, 1(1), 1–10. https://doi.org/10.56098/ijvtpr.v1i1.2

Oller, J. W., & Santiago, D. (2022). All cause mortality and COVID-19 injections: Evidence from 28 weeks of Public Health England "COVID-19 vaccine surveillance reports.” Internatinonal Journal of Vaccine Theory, Practice, and Research, 2(2), 301–319. https://doi.org/10.56098/ijvtpr.v2i2.42

Ophir, Y., Shira-Raz, Y., Zakov, S., & McCullough, P. A. (2023) The efficacy of COVID-19 vaccine boosters against severe illness and deaths scientific fact or wishful myth? Journal of American Physicians and Surgeons 28,20-7. https://www.jpands.org/search-results.htm

Oster, M.E., Shay, D. K., Su, J.R., Gee, J., Creech, C. B., Broder, K. R., et al. (2022). Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA 327(4), 331-340. https://doi.org/10.1001/jama.2021.24110

Oyebode, F. (2013). Clinical errors and medical negligence. Medical Principles and Practice 22, 323-33. https://doi.org/10.1159/000346296.

Palmer, M., Bhakdi, S., Hooker, B., Holland, M., DesBois, M., Rasnick, D., & Fitts, C. A. (2023). Evidence of fraud in Pfizer’s clinical trials. mRNA Vaccine Toxicity. Doctors for COVID Ethics, Amsterdam, The Netherlands; 2023. 37-9. 83. Assessment Report: Comirnaty. European Medicines Agency, Amsterdam, The Netherlands. https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf

Parry, P. I., Lefringhausen, A., Turni, C., Neil, C. J., Cosford, R., Hudson, N. J., & Gillespie, J. (2023). ’Spikeopathy’: COVID-19 spike protein is pathogenic, from both virus and vaccine mRNA. Biomedicines 11, 2287. https://doi.org/10.3390/biomedicines11082287

Patalon, T., Saciuk, Y., Perez, G., Peretz, A., Ben-Tov, A., & Gazi,t S. (2023). Dynamics of naturally acquired immunity against severe acute respiratory syndrome coronavirus 2 in children and. Adolescents. The Journal of Pediatrics 257, 113371. https://doi.org/10.1016/j.jpeds.2023.02.016

Patterson, B. K., Yogendra, R., Francisco, E. B., Long, E., Pise, A., Osgood, E., et al. (2024). Persistence of S1 spike protein in CD16+ monocytes up to 245 days in SARS-CoV-2 negative post COVID-19 vaccination individuals with post-acute sequalae of COVID-19 (PASC)-like symptoms. medRxiv Preprint. March 24. https://www.medrxiv.org/content/10.1101/2024.03.24.24304286v1

Pezzullo, A.M., Axfors, C., Contopoulos-Ioannidis, D. G., Apostolatos, A., & Ioannidis, J. P. (2023). Age-stratified infection fatality rate of COVID-19 in the non-elderly population. Environmental Research 216, 114655. https://doi.org/10.1016/j.envres.2022.114655

Pfizer, Inc. (2020). COVID-19 vaccine maker pledge. Retrieved on November 24, 2023, from https://www.pfizer.com/news/announcements/covid-19-vaccine-maker-pledge

Pfizer, Inc. (2021). Interim report – adolescent 6-month update: A phase 1/2/3, placebo-controlled, randomized, observer-blind, dose-finding study to evaluate the safety, tolerability, immunogenicity, and efficacy of SARS-CoV- 2 RNA vaccine candidates against COVID-19 in healthy individuals. New York, NY. https://data.parliament.uk/DepositedPapers/Files/DEP2023-0138/Clinical_Study_Report_Part_2.pdf

Pfizer, Inc. (2021b). Summary of clinical safety. New York, NY. https://phmpt.org/wp-content/uploads/2021/12/STN-125742_0_0-Section-2.7.4-summary-clin-safety.pdf

Pfizer, Inc. (2022). Appendix 2.2 Cumulative and Interval Summary Tabulation of Serious and Non-serious Adverse Reactions From Post-marketing Data Sources (BNT162B2). New York, NY. https://www.globalresearch.ca/wp-content/uploads/2023/05/pfizer-report.pdf

Pfizer, Inc. (2022b). Periodic safety update report #3 for active substance: COVID-19 mRNA vaccine, BNT162b2. BioNTech Manufacturing GmbH, Mainz, Germany. https://tkp.at/wp-content/uploads/2023/03/3.PSUR-1.pdf

Pilz, S., Theiler-Schwetz, V., Trummer, C., Krause, R., & Ioannidis, J.P. (2022). SARS-CoV-2 reinfections: overview of efficacy and duration of natural and hybrid immunity. Environmental Research 209, 112911. https://doi.org/10.1016/j.envres.2022.112911

Polack, F. P., Thomas. S. J., Kitchin. N., Absalon, J., Gurtman, A., Lockhart, S., et al. (2020). Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. The New England Journal of Medicine 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577

Polykretis, P., Donzelli, A., Lindsay, J. C., Wiseman, D., Kyriakopoulos, A. M., Mörz, M., et al. (2023). Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity 56(1), 2259123. https://doi.org/10.1080/08916934.2023.2259123

Pozdnyakova, V., Weber, B., Cheng, S., Ebinger, J. E. (2022). Review of immunologic manifestations of COVID-19 infection and vaccination. Cardiology Clinics 40(3), 301-308. https://doi.org/10.1016/j.ccl.2022.03.006

Prasad, V. (2023). Preprint servers have repeatedly censored our work on COVID-19 policy. Retrieved on May 8, 2024 from https://www.sensible-med.com/p/preprint-servers-have-repeatedly

Primorac, D., Vrdoljak, K., Brlek, P., Pavelić, E., Molnar, V., Matišić, V., Erceg Ivkošić, I., & Parčina, M. (2022). Adaptive Immune Responses and Immunity to SARS-CoV-2. Frontiers in Immunology 13, 848582. https://doi.org/10.3389/fimmu.2022.848582

Procter, B., C., Ross, C., Pickard, V., Smith, E., Hanson, C., McCullough P., A. (2020) Clinical outcomes after early ambulatory multidrug therapy for high-risk SARS-CoV-2 (COVID-19) infection. Reviews in Cardiovascular Medicine. 21(4), 611-614. https://doi.org/10.31083/j.rcm.2020.04.260

Prodromos, C. & Rumschlag, T. (2020). Hydroxychloroquine is effective, and consistently so when provided early, for COVID-19: a systematic review. New Microbes and New Infections 38, 10077. https://doi.org/10.1016/j.nmni.2020.100776

Qin, Z., Bouteau, A., Herbst, C., & Igyártó, B. Z. (2022). Pre-exposure to mRNA-LNP inhibits adaptive immune responses and alters innate immune fitness in an inheritable fashion. PLoS Pathogens 18(9), e1010830. https://doi.org/10.1371/journal.ppat.1010830

Rancourt, D. G., Baudin, M., Hickey, J., & Mercier, J. (2023a). COVID-19 vaccine-associated mortality in the Southern hemisphere. Correlation Research in the Public Interest. Preprint. https://correlation-canada.org/covid-19-vaccine-associated-mortality-in-the-southern-hemisphere/

Rancourt, D. G., Baudin, M., Hickey, J., & Mercier, J. (2023b). Age-Stratified COVID-19 Vaccine-Dose Fatality Rate for Israel and Australia. Correlation Research in the Public Interest. Preprint. https://correlation-canada.org/report-age-stratified-covid-19-vaccine-dose-fatality-rate-for-israel-and-australia/

Raveendran, A. V., Jayadevan, R., & Sashidharan, S. (2021). Long COVID: an overview. Elsevier Diabetes & Metabolic Syndrome: Clinical Research & Reviews 15, 869-75. https://doi.org/10.1016/j.dsx.2021.04.007

Rechavi, Y., Shashar, M., Lellouche, J., Yana, M., Yakubovich, D., and Sharon, N. (2021). Occurrence of BNT162b2 vaccine adverse reactions is associated with enhanced SARS-CoV-2 IgG antibody response. Vaccines 9, 977. https://doi.org/10.3390/vaccines9090977

RECOVERY Collaborative Group; Horby, P., Mafham, M., Linsell, L., Bell, J. L., Staplin, N., Emberson, J. R., et al. (2020). Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19. The New England Journal of Medicine 383(21), 2030-2040. https://doi.org/10.1056/NEJMoa2022926

Reina, J. (2022). Possible effect of the "original antigenic sin" in vaccination against new variants of SARS-CoV-2. Rev Clin Esp (Barc) 222, 91-2. https://doi.org/10.1016/j.rceng.2021.05.005.Rees, A.R. (2022). Viruses, vaccines and cardiovascular effects. The British Journal of Cardiology 29, 16. https://doi.org/10.5837/bjc.2022.016

Reynolds, C.J., Pade, C., Gibbons, J. M., Otter, A. D., Lin, K. M., Muñoz Sandoval, D., et al. (2022). Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science 15, 377(6603), eabq1841. https://doi.org/10.1126/science.abq1841

Risch, HA. (2022). Plausibility But Not Science Has Dominated Public Discussions of the COVID Pandemic. Retrieved on 16, 2023, from https://brownstone.org/articles/plausibility-but-not-science-has-dominated-public-discussions-of-the-covid-pandemic/

Rodríguez, Y., Rojas, M., Beltrán, S., Polo, F., Camacho-Domínguez, L., Morales, S. D., et al. (2022). Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. Journal of Autoimmunity 132, 102898. https://doi.org/10.1016/j.jaut.2022.102898

Rodziewicz, T. L., Houseman, B., & Hipskind, J. E. (2023). Medical error reduction and prevention. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL); 2023. https://www.ncbi.nlm.nih.gov/books/NBK499956/

Rojas, M., Herrán, M., Ramírez-Santana, C., Leung, P. S., Anaya, J. M., Ridgway, W. M., & Gershwin, M. E. (2023). Molecular mimicry and autoimmunity in the time of COVID-19. Journal of Autoimmunity 139, 103070. https://doi.org/10.1016/j.jaut.2023.103070

Röltgen, K., Nielsen, S. C. A., Silva, O., Younes, S. F., Zaslavsky, M., Costales, C., et al. (2022). Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 185(6), 1025-1040.e14. https://doi.org/10.1016/j.cell.2022.01.018.

Rose, J. (2021a). A report on US Vaccine Adverse Events Reporting System (VAERS) of the COVID-19 messenger ribonucleic acid (mRNA) biologicals. Science, Public Health Policy & the Law 2, pp. 59-80. https://www.howbadismybatch.com/jessicarose.pdf

Rose, J. (2021b), Critical Appraisal of VAERS Pharmacovigilance: Is the U.S. Vaccine Adverse Events Reporting System (VAERS) a Functioning Pharmacovigilance System? Science, Public Health Policy & the Law 3, pp. 100–129. https://nationalcitizensinquiry.ca/wp-content/uploads/2023/04/WI-4d-Rose-Pharmacovigilance-VAERS-Paper-FINAL_2021-10-01.pdf

Rose J. & McCullough P. A. (2021). A Report on Myocarditis Adverse Events in the U.S. Vaccine Adverse Events Reporting System (VAERS) in Association with COVID-19 Injectable Biological Products, Current Problems in Cardiology, 101011. https://doi.org/10.1016/j.cpcardiol.2021.101011

Russell, M. W. & Mestecky, J. (2022). Mucosal immunity: the missing link in comprehending SARS-CoV-2 infection and transmission. Frontiers in Immunology 13, 957107. https://doi.org/10.3389/fimmu.2022.957107.

Rzymski, P., Pazgan-Simon, M., Simon, K., Łapiński, T., Zarębska-Michaluk, D., et al. (2021) Clinical Characteristics of Hospitalized COVID-19 Patients Who Received at Least One Dose of COVID-19 Vaccine. Vaccines (Basel) 9(7), 781. https://doi.org/10.3390/vaccines9070781

Sahin, U., Karikó, K., & Türeci, Ö. (2014). mRNA-based therapeutics--developing a new class of drugs. Nature Reviews Drug Discovery 13, 759-80. https://doi.org/10.1038/nrd4278

Samanovic, M. I., Cornelius, A. R., Gray-Gaillard, S. L., Allen, J. R., Karmacharya, T., Wilson, J. P., et al. (2021). Robust immune responses after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals. medRxiv Preprint. https://doi.org/10.1101/2021.02.07.21251311.

Sanning, S. (2022). Pathology Conference: Vaccine-induced spike protein production in the brain, organs etc., now proven [Webpage in German]. Retrieved on October 16, 2023, from https://report24.news/pathologie-konferenz-impfinduzierte-spike-produktion-in-gehirn-u-a-organen-nun-erwiesen/

Santiago, D., & Oller, J. W. (2023). Abnormal clots and all-cause mortality during the pandemic experiment: Five doses of COVID-19 vaccine are evidently lethal to nearly all Medicare participants. International Journal of Vaccine Theory, Practice, and Research, 3(1), 847–890. https://doi.org/10.56098/ijvtpr.v3i1.73

Santin, A., D., Scheim, D., E., McCullough, P., A., Yagisawa, M., Borody, T., J. (2021). Ivermectin: a multifaceted drug of Nobel prize-honoured distinction with indicated efficacy against a new global scourge, COVID-19. New Microbes New Infections 43:100924. https://doi.org/10.1016/j.nmni.2021.100924

Schreckenberg, R., Woitasky, N., Itani, N., Czech, L., Ferdinandy, P., & Schulz, R. (2024). Cardiac side effects of RNA-based SARS-CoV-2 vaccines: hidden cardiotoxic effects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure. British Journal of Pharmacology 181, 345-61. https://doi.org/10.1111/bph.16262

Schwab, C., Domke, L. M., Hartmann, L., Stenzinger, A., Longerich, T., & Schirmacher, P. (2023). Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clinical Research in Cardiology 112(3), 431-440. https://doi.org/10.1007/s00392-022-02129-5

Seneff, S. & Nigh, G. (2021). Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. International Journal of Vaccine Theory, Practice, and Research 2, 38-79. https://doi.org/10.56098/ijvtpr.v2i1.23.

Seneff, S., Kyriakopoulos, A. M., Nigh, G., & McCullough, P. A. (2023). A potential role of the spike protein in neurodegenerative diseases: a narrative review. Cureus 15, e34872. https://doi.org/10.7759/cureus.34872

Setty, M. (2023). Latest Data Raise More Questions About Pfizer Vaccine Trial. The Defender 10/30/23. https://childrenshealthdefense.org/defender/data-pfizer-covid-vaccine-trial-questions/

Shahhosseini, N., Babuadze, G. G., Wong, G., & Kobinger, G. P. (2021). Mutation signatures and in silico docking of novel SARS-CoV-2 variants of concern. Microorganisms. 9, 926. https://doi.org/10.3390/microorganisms9050926.

Shaw, C. A. (2020). Weaponizing the peer review system. International Journal of Vaccine Theory, Practice, and Research, 1(1), 11–26. https://doi.org/10.56098/ijvtpr.v1i1.1

Shir-Raz, Y., Elisha, E., Martin, B., Ronel, N., & Guetzkow, J. (2022). Censorship and suppression of COVID-19 heterodoxy: tactics and counter-tactics. Minerva 1-27. https://doi.org/10.1007/s11024-022-09479-4

Shiravi, A. A., Ardekani, A., Sheikhbahaei, E., & Heshmat-Ghahdarijani, K. (2022). Cardiovascular complications of SARS-CoV-2 vaccines: an overview. Cardiology and Therapy 11, 13-21. https://doi.org/10.1007/s40119-021-00248-0

Shrestha, N. K., Burke, P. C., Nowacki, A. S., Simon, J. F., Hagen, A., & Gordon, S. M. (2023). Effectiveness of the coronavirus disease 2019 bivalent vaccine. Open Forum Infectious Diseases 10, ofad209. https://doi.org/10.1093/ofid/ofad209

Shrestha, N. K., Burke, P. C., Nowacki, A. S., & Gordon, S. M. (2023b). Risk of coronavirus disease 2019 (COVID-19) among those up-to-date and not up-to-date on COVID-19 vaccination by US CDC criteria. PLoS One 18, e0293449. https://doi.org/10.1371/journal.pone.0293449

Shrestha, N. K., Burke, P. C., Nowacki, A. S., & Gordon, S. M. (2024). Effectiveness of the 2023-2024 formulation of the Coronavirus Disease 2019 mRNA vaccine against the JN.1 variant. medRxiv preprint. https://doi.org/10.1101/2024.04.27.24306378

Shrock, E., Fujimura, E., Kula, T., Timms, R. T., Lee, I. H., Leng, Y., et al. (2020). Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 370(6520), eabd4250. https://doi.org/10.1126/science.abd4250

Singh, J. A., Kochhar, S., & Wolff, J (2021). Placebo use and unblinding in COVID-19 vaccine trials: recommendations of a WHO Expert Working Group. Nature Medicine 27, 569-70. https://doi.org/10.1038/s41591-021-01299-5

Skidmore, M. (2023). COVID-19 illness and vaccination experiences in social circles affect covid-19 vaccination decisions. Science, Public Health Policy and the Law 4, 208-26. https://doi.org/10.20944/preprints202401.1470.v1

Soares, P., Rocha, JV., Moniz, M., Gama, A., Laires, PA., Pedro, AR., Nunes C. (2021) Factors associated with COVID-19 vaccine hesitancy. Vaccines 9(3), 300. https://doi.org/10.3390/vaccines9030300

Speicher, D. J., Rose, J., Gutschi, L. M., Wiseman, D. M., & McKernan, K. (2023). DNA fragments detected in monovalent and bivalent Pfizer/BioNTech and Moderna modRNA COVID-19 vaccines from Ontario, Canada: Exploratory dose response relationship with serious adverse events. OSFPreprints October 19. https://doi.org/10.31219/osf.io/mjc97

Spinardi, J.R. & Srivastava, A. (2023). Hybrid immunity to SARS-CoV-2 from infection and vaccination-evidence synthesis and implications for new COVID-19 vaccines. Biomedicines 11, 370. https://doi.org/10.3390/biomedicines11020370

Stratton, K., Almario, D. A., & McCormick, M. C., editors (2002). Immunization safety review: SV40 contamination of polio vaccine and cancer. National Academies Press (US), Washington DC. https://www.ncbi.nlm.nih.gov/books/NBK221112/

Sugiyama A., Kurisu A., Nagashima S., Hando K., Saipova K., Akhmedova S., Abe K., Imada H., Hussain M.R.A., Ouoba S., et al. Seroepidemiological Study of Factors Affecting Anti-Spike IgG Antibody Titers after a Two-Dose MRNA COVID-19 Vaccination in 3744 Healthy Japanese Volunteers. Sci. Rep. 2022;12:16294. doi: 10.1038/s41598-022-20747-x

Sultana, A., Mim, S. R., Saha, A., Yesmin, F., Tahsin, M. R., Bahar, N. B., et al. (2023). Assessing the self-reported after events following immunization of COVID-19 vaccines in Turkey and Bangladesh. Environmental Science and Pollution Research 30(16), 47381-47393. https://doi.org/10.1007/s11356-023-25527-2

Swenson, A. (2021). COVID vaccine package insert is blank because up-to-date information is online. Retrieved on January 15, 2024, from https://apnews.com/article/fact-checking-956865924140

Takeuchi M., Higa Y., Esaki A., Nabeshima Y., Nakazono A. Does Reactogenicity after a Second Injection of the BNT162b2 Vaccine Predict Spike IgG Antibody Levels in Healthy Japanese Subjects? PLoS ONE. 2021;16:e0257668. doi: 10.1371/journal.pone.0257668

Talotta, R. (2021). Do COVID-19 RNA-based vaccines put at risk of mmune-mediated diseases? In reply to "potential antigenic ross-reactivity between SARS-CoV-2 and human tissue with a possible ink to an increase in autoimmune diseases". Clinical Immunology 24, 108665. https://doi.org/10.1016/j.clim.2021.108665

Tamandjou, C., Auvigne, V., Schaeffer, J., Vaux, S., & Parent du Châtelet, I. (2023). Effectiveness of second booster compared to first booster and protection conferred by previous SARS-CoV-2 infection against symptomatic Omicron BA.2 and BA.4/5 in France. Vaccine 41, 2754-60. https://doi.org/10.1016/j.vaccine.2023.03.031.

Thacker, P. D. (2021). COVID-19: researcher blows the whistle on data integrity issues in Pfizer's vaccine trial. BMJ 375, n2635. https://doi.org/10.1136/bmj.n2635

Thacker, P. D. (2022). Why Do People Not “Trust the Science”? Because Like All People, Scientists Are Not Always Trustworthy. Retrieved on May 8, 2024 from https://disinformationchronicle.substack.com/p/why-do-people-not-trust-the-science

Thames, A.H., Wolniak, K.L., Stupp, S.I., & Jewett, M.C. (2020). Principles learned from the international race to develop a safe and effective COVID-19 vaccine. ACS Central Science 6, 1341-7. https://doi.org/10.1021/acscentsci.0c00644

The Vigilant Fox (2023). Edward Dowd presents irrefutable evidence vaccine mandates killed & disabled countless americans. Retrieved on July 7, 2023, from https://dailyclout.io/edward-dowd-presents-irrefutable-evidence-vaccine-mandates-killed-disabled-countless-americans/

Thomas, S. J., Moreira, E. D. Jr., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., et al. (2021). Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine through 6 Months. The New England Journal of Medicine 385(19), 1761-1773. https://doi.org/10.1056/NEJMoa2110345

Thornley, S., Morris, A. J., Sundborn, G., & Bailey, S. (2020). How fatal is COVID-19 compared with seasonal influenza? The devil is in the detail [Rapid Response]. BMJ 371, m3883. https://doi.org/10.1136/bmj.m3883

Thorp, H. H. (2020). A dangerous rush for vaccines. Science 369, 885. https://doi.org/10.1126/science.abe3147

Tinari, S. (2021). The EMA covid-19 data leak, and what it tells us about mRNA instability. BMJ 372, n627. https://doi.org/10.1136/bmj.n627

Torreele, E. (2020). The rush to create a COVID-19 vaccine may do more harm than good. BMJ 370, m3209. https://doi.org/10.1136/bmj.m3209

Trougakos, I.P., Terpos, E., Alexopoulos, H., Politou, M., Paraskevis, D., Scorilas, A., et al. (2022). Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends in Molecular Medicine 28(7), 542-554. https://doi.org/10.1016/j.molmed.2022.04.007

Turner, J. S., Kim, W., Kalaidina, E., Goss, C. W., Rauseo, A. M., Schmitz, A. J., et al. (2021). SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature 595(7867), 421-425. https://doi.org/10.1038/s41586-021-03647-4

UK Health Security Agency. (2022). COVID-19 vaccine surveillance report, Week 8 Feb. 24, 2022. https://assets.publishing.service.gov.uk/media/621c91c0d3bf7f4f04b2b648/Vaccine_surveillance_report_-_week-8.pdf

U.S. Department of Health & Human Services (DHHS) (2022). Vaccine side effects. Retrieved on July 5, 2023, from https://www.hhs.gov/immunization/basics/safety/side-effects/index.html

US Food and Drug Administration (2020). Roster of the vaccines and related biological products advisory committee. Retrieved on December 20, 2023, from https://www.fda.gov/advisory-committees/vaccines-and-related-biological-products-advisory-committee/roster-vaccines-and-related-biological-products-advisory-committee

US Food and Drug Administration (2021). Vaccines and related biological products advisory committee meeting, September 17, 2021. FDA Briefing Document: Application for Licensure of a Booster Dose for COMIRNATY (COVID-19 Vaccine, mRNA). White Oak, MD. https://www.fda.gov/media/152176/download

US Food and Drug Administration (2021b). Summary basis for regulatory action. Review committee’s recommendation to approve Pfizer-BioNTech product, COMIRNATY (COVID-19 vaccine, mRNA). White Oak, MD. https://www.fda.gov/media/151733/download

Uwamino, Y., Kurafuji, T., Sato, Y., Tomita, Y., Shibata, A., Tanabe, A., et al. (2022). Young age, female sex, and presence of systemic adverse reactions are associated with high post-vaccination antibody titer after two doses of BNT162b2 mRNA SARS-CoV-2 vaccination: an observational study of 646 japanese healthcare workers and university staff. Vaccine 40, 1019–1025. https://doi.org/10.1016/j.vaccine.2022.01.002

Vaccine Research & Development (2023). How can COVID-19 vaccine development be done quickly and safely? Retrieved on October 16, 2023, from https://coronavirus.jhu.edu/vaccines/timeline

Valera-Rubio, M. M., Sierra-Torres, M. I., Castillejo García, R. R., Cordero-Ramos, J. J., López-Márquez, M. R., Cruz-Salgado, Ó. O., & Calleja-Hernández, M. Á. M. (2022). Adverse events reported after administration of BNT162b2 and mRNA-1273 COVID-19 vaccines among hospital workers: a cross-sectional survey-based study in a Spanish hospital. Expert Review of Vaccines 21, 533-40. https://doi.org/10.1080/14760584.2022.2022478

Van Lint, S., Renmans, D., Broos, K., Dewitte, H., Lentacker, I., Heirman, C., et al. (2015). The ReNAissanCe of mRNA-based cancer therapy. Expert Review of Vaccines 14(2), 235-51. https://doi.org/10.1586/14760584.2015.957685

Veenstra, T. D., Pauley, B., Injeti, E., Rotello, R. J. (2022). In vitro characterization of SARS-CoV-2 protein translated from the Moderna mRNA-1273 vaccine. MedRxiv preprint. (Posted March 02, 2022). https://doi.org/10.1101/2022.03.01.22271618

Wagner, R., Hildt, E., Grabski, E., Sun, Y., Meyer, H., Lommel, A., et al. (2021). Accelerated development of COVID-19 vaccines: Technology platforms, benefits, and associated risks. Vaccines (Basel) 9(7), 747. https://doi.org/10.3390/vaccines9070747

Wang, L., Davis, P. B., Kaelber, D. C., Volkow, N. D., & Xu, R. (2022). Comparison of mRNA-1273 and BNT162b2 vaccines on breakthrough SARS-CoV-2 infections, hospitalizations, and death during the Delta-predominant period. JAMA 327, 678-80. https://doi.org/10.1001/jama.2022.0210

Wang, Z., Muecksch, F., Schaefer-Babajew, D., Finkin, S., Viant, C., Gaebler, C., et al. (2021). Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 595(7867), 426-431. https://doi.org/10.1038/s41586-021-03696-9

Wang, Z., Yang, X., Zhong, J., Zhou, Y., Tang, Z., Zhou, H., et al. (2021). Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nature Communications 12, 1724. https://doi.org/10.1038/s41467-021-22036-z

WHO Ad Hoc Expert Group on the Next Steps for COVID-19 Vaccine Evaluation; Krause, P. R., Fleming, T. R., Longini, I. M., Peto, R., Beral, V., Bhargava, B., et al. (2021). Placebo-controlled trials of COVID-19 vaccines - Why we still need them. The New England Journal of Medicine 384(2), e2. https://doi.org/10.1056/NEJMp2033538

Wiseman, D., Guetzkow, J., Seligmann, H., Seligmann, S. (2021). Booster Doses for Pfizer-BioNtech Vaccine. Docket No. FDA-2021-N-0965. Written comments submitted to: Vaccines and Related Biological Products Advisory Committee, September 17, 2021 Meeting. https://www.fda.gov/media/152176/download

Wünstel M. (2020). Reutlingen Autopsy/Histology Study. Side-effects from corona vaccinations [Webpage in German]. Retrieved on October 16, 2023, from https://corona-blog.net/2022/03/10/reutlinger-autopsie-histologie-studie-nebenwirkungen-und-todesfaelle-durch-die-corona-impfungen/

Xu, S., Huang, R., Sy, L. S., Glenn, S. C., Ryan, D. S., Morrissette, K., et al. (2021). COVID-19 vaccination and non-COVID-19 mortality risk - seven integrated health care organizations, United States, December 14, 2020-July 31, 2021. Morbidity and Mortality Weekly Report 70(43), 1520-1524. https://doi.org/10.15585/mmwr.mm7043e2

Yan, M. M., Zhao, H., Li, Z. R., Chow, J. W., Zhang, Q., Qi, Y. P., et al. (2022). Serious adverse reaction associated with the COVID-19 vaccines of BNT162b2, Ad26.COV2.S, and mRNA-1273: Gaining insight through the VAERS. Frontiers in Pharmacology 13, 921760. https://doi.org/10.3389/fphar.2022.921760

Yasmin, F., Najeeb, H., Naeem, U., Moeed, A., Atif, A. R., Asghar, M. S., et al. (2023). Adverse events following COVID-19 mRNA vaccines: A systematic review of cardiovascular complication, thrombosis, and thrombocytopenia. Immunity, Inflammation and Disease 11(3), e807. https://doi.org/10.1002/iid3.807

Downloads

Published

2024-06-29

How to Cite

COVID-19 Modified mRNA “Vaccines” Part 1: Lessons Learned from Clinical Trials, Mass Vaccination, and the Bio-Pharmaceutical Complex. (2024). International Journal of Vaccine Theory, Practice, and Research , 3(2), 1112-1178. https://doi.org/10.56098/fdrasy50

Similar Articles

1-10 of 52

You may also start an advanced similarity search for this article.