Autoimmune and Neoplastic Outcomes After the mRNA Vaccination: The Role of T Regulatory Cell Responses

Authors

  • Anthony M Kyriakopoulos Nasco AD Biotechnology Laboratory
  • Greg Nigh Greg Nigh LLC
  • Peter A McCullough McCullough Foundation
  • Stephanie Seneff Massachusetts Institute of Technology

DOI:

https://doi.org/10.56098/16j4nf05

Keywords:

Treg cells, Teff cells, SARS-CoV-2 mRNA vaccination, immunosenescence, thymic involution, cancer, autoimmunity, TGF-β, IL-6, IgG4

Abstract

  • A plethora of autoimmune disease incidences occured after COVID-19 mRNA injections were rolled out.
  • Aggressive cancer cases have occurred in the bodies of recipients at sites where the mRNA was injected and at distant metastatic sites.
  • The mRNA vaccines cause thymic involution (shrinking) and dysregulation of the T regulatory (Treg) and T effector (Teff) homeostatic cell balance.
  • Activated immune cells deliver spike protein to the thymic epithelial cells, damaging them.
  • The Treg/Teff balance may determine the fate of autoimmunity and/or cancer and is different for patients with cancer versus those without any cancerous tissues.
  • Repeated mRNA injections lead to empirical evidence of impaired immune functions (elevated IgG4, PD-L1), associated with increased autoimmunity and cancer risks, and decreased resistance to infections.
  • In the with-cancer recipients, the mRNA vaccine may be associated with either autoimmunity or further progression of the cancer(s) depending on the immunotherapy treatment the patient receives.

When an antigen stimulates the immune system, specific T regulatory (Treg) and T effector (Teff) subpopulations develop from naïve T cells. An imbalance between Treg and Teff cells can lead to either cancer or autoimmunity. Treg cells are beneficial in that they protect from autoimmunity. However, they suppress the immune response to tumors. In this review, we analyze Treg responses after SARS-CoV-2 mRNA vaccination and find distinct pathological responses under differing conditions. Injection with modified mRNA can lead to a delayed but highly active immune response, resulting in overactivation of the inflammasome. The mRNA “vaccine” induces a very strong IgG antibody response, while suppressing CD8+ T cell activation. Exosomes distribute the recombinant, synthetic spike protein and the mRNA encoding it throughout the organism. In cancer patients, disease progression depends on the starting point of the cancer patient at the time of injection and the type of cancer treatment underway. Migration of circulating dendritic cells and Treg cells back to the thymus, while they are carrying spike protein, damages the medullary thymic epithelial cells and accelerates thymic involution, a direct cause of inflammaging and immunosenescence. In summary, the Treg responses to mRNA injections and subsequent mRNA-encoded SARS-CoV-2 spike protein expression may disrupt immune capacities resulting in accelerated development of autoimmune disease and cancer. The processes discussed here are consistent with both epidemiological findings and case reports.

Author Biographies

  • Anthony M Kyriakopoulos, Nasco AD Biotechnology Laboratory

    Nasco AD Biotechnology Laboratory, Department of Research and Development, Sachtouri 11, 18536, Piraeus, Greece

  • Greg Nigh, Greg Nigh LLC

    Greg Nigh LLC, Westerly, RI USA 02891

  • Peter A McCullough, McCullough Foundation

    McCullough Foundation, Dallas TX 75201 USA

  • Stephanie Seneff, Massachusetts Institute of Technology

    Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge MA 02139 USA

References

Abu-Abaa, M., Dawood, G., Arshad, H., Jumaah, O., & Landau, D. (2022). A Possible Case of Autoimmune Encephalitis After mRNA COVID-19 Booster Vaccine: A Case Report. Cureus, 14(11), e31118. https://doi.org/10.7759/cureus.31118

Agrati, C., Castilletti, C., Goletti, D., Meschi, S., Sacchi, A., Matusali, G., Bordoni, V., Petrone, L., Lapa, D., Notari, S, et al. (2021). Coordinate Induction of Humoral and Spike Specific T-Cell Response in a Cohort of Italian Health Care Workers Receiving BNT162b2 mRNA Vaccine. Microorganisms, 9(6), 1315. https://doi.org/10.3390/microorganisms9061315

Ahmad, E., Elgohary, T., & Ibrahim, H. (2011). Naturally occurring regulatory T cells and interleukins 10 and 12 in the pathogenesis of idiopathic warm autoimmune hemolytic anemia. Journal of Investigational Allergology and Clinical Immunology, 21(4), 297-304. https://www.jiaci.org/issues/vol21issue4/7.pdf

Ai, L., Chen, J., Yan, H., He, Q., Luo, P., Xu, Z., & Yang, X. (2020). Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy. Drug Design, Development and Therapy, 14, 3625-3649. https://doi.org/10.2147/DDDT.S267433

Akiyama, M., Suzuki, K., Kassai, Y., Miyazaki, T., Morita, R., Yoshimura, A., & Takeuchi, T. (2016). Resolution of elevated circulating regulatory T cells by corticosteroids in patients with IgG4-related dacryoadenitis and sialoadenitis. International Journal of Rheumatic Diseases, 19(4), 430-2. https://doi.org/10.1111/1756-185X.12725

Al-Mterin, M. A., Alsalman, A., & Elkord, E. (2022). Inhibitory immune checkpoint receptors and ligands as prognostic biomarkers in COVID-19 patients. Frontiers in Immunology, 13, 870283. https://doi.org/10.3389/fimmu.2022.870283

Alexandropoulos, K., Bonito, A. J., Weinstein, E. G., & Herbin, O. (2015). Medullary thymic epithelial cells and central tolerance in autoimmune hepatitis development: novel perspective from a new mouse model. International Jouirnal of Molecular Science, 16(1), 1980-2000. https://doi.org/10.3390/ijms16011980

Alqatari, S., Ismail, M., Hasan, M., Bukhari, R., Al Argan, R., Alwaheed, A., Alkhafaji, D., Ahmed, S. E., Hadhiah, K., Alamri, T., et al. (2023). Emergence of post COVID-19 vaccine autoimmune diseases: A single center study. Infection and Drug Resistance, 16, 1263-1278. https://doi.org/10.2147/IDR.S394602

Alsaab, H. O., Sau, S., Alzhrani, R., Tatiparti, K., Bhise, K., Kashaw, S. K., & Iyer, A. K. (2017). PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Frontiers in Pharmacology, 8, 561. https://doi.org/10.3389/fphar.2017.00561

Amar, S., Avni, Y. S., O'Rourke, N., & Michael, T. (2022). Prevalence of Common Infectious Diseases After COVID-19 Vaccination and Easing of Pandemic Restrictions in Israel. JAMA Network Open, 5(2), e2146175. https://doi.org/10.1001/jamanetworkopen.2021.46175

Ansari, A. R. & Liu, H. (2017). Acute thymic involution and mechanisms for recovery. Archivum Immunologiae et Therapiae Experimentalis, 65, 401-20. https://doi.org/10.1007/s00005-017-0462-x

Antia, A., Ahmed, H., Handel, A., Carlson, N. E., Amanna, I. J., Antia, R., & Slifka, M. (2018). Heterogeneity and longevity of antibody memory to viruses and vaccines. PLoS Biology, 16(8), e2006601. https://doi.org/10.1371/journal.pbio.2006601

Bae, E. & Bae, S, Vaysblat M, Abdelwahed M, Sarkar K, Bae S. (2023). Development of high-grade sarcoma after second dose of Moderna vaccine. Cureus, 15(4), e37612. https://doi.org/10.7759/cureus.37612

Bailey, S. R., Nelson, M. H., Himes, R. A., Li, Z., Mehrotra, S., & Paulos, C. M. (2014). Th17 cells in cancer: the ultimate identity crisis. Frontiers in Immunology, 5, 276. https://doi.org/10.3389/fimmu.2014.00276

Bansal, S., Perincheri, S., Fleming, T., Poulson, C., Tiffany, B., Bremner, R. M., & Mohanakumar, T. (2021). Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines. Journal of Immunology, 207(10), 2405-2410. https://doi.org/10.4049/jimmunol.2100637

Barcellini, W., Clerici, G., Montesano, R., Taioli, E., Morelati, F., Rebulla, P., & Zanella, A. (2000). In vitro quantification of anti-red blood cell antibody production in idiopathic autoimmune haemolytic anaemia: effect of mitogen and cytokine stimulation. British Journal of Haematology, 111(2), 452-60. https://doi.org/10.1046/j.1365-2141.2000.02380.x

Bareke, H., Juanes-Velasco, P., Landeira-Viñuela, A., Hernandez, A. P., Cruz, J. J., Bellido, L., Fonseca, E., Niebla-Cárdenas, A., Montalvillo, E., Góngora, R., et al. (2021). Autoimmune responses in oncology: Causes and significance. International Journal of Molecular Science, 22(15), 8030. https://doi.org/10.3390/ijms22158030

Barhoumi, T., Alghanem, B., Shaibah, H., Mansour, F. A., Alamri, H. S., Akiel, M. A., Alroqi, F., & Boudjelal, M. (2021). SARS-CoV-2 Coronavirus Spike protein-induced apoptosis, inflammatory, and oxidative stress responses in THP-1-like-macrophages: Potential role of angiotensin-converting enzyme inhibitor (Perindopril). Frontiers in Immunology, 12, 728896. https://doi.org/10.3389/fimmu.2021.728896

Barmada, A., Klein, J., Ramaswamy, A., Brodsky, N. N., Jaycox, J. R., Sheikha, H., Jones, K. M., Habet, V., Campbell, M., Sumida, T. S., et al. (2023). Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Science Immunology, 8(83), eadh3455. https://doi.org/10.1126/sciimmunol.adh3455

Baum, A. & Garca-Sastre, (2010). A. Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids, 38(5), 1283-99. https://doi.org/10.1007/s00726-009-0374-0

Bednar, K. J., Lee, J. H., & Ort, T. (2022). Tregs in autoimmunity: Insights into intrinsic brake mechanism driving pathogenesis and immune homeostasis., 13, 932485. https://doi.org/10.3389/fimmu.2022.932485

Benitez Fuentes, J. D., Mohamed Mohamed, K., de Luna Aguilar, A., Jiménez García, C., Guevara-Hoyer, K., Fernandez-Arquero, M., Rodríguez de la Peña, M. A., Garciía Bravo, L., Jiménez Ortega, A. F., Flores Navarro, P., et al. (2022). Evidence of exhausted lymphocytes after the third anti-SARS-CoV-2 vaccine dose in cancer patients. Frontiers in Oncology, 12, 975980. https://doi.org/10.3389/fonc.2022.975980

Biering, S. B., Gomes de Sousa, F. T. G., Tjang, L. V., Pahmeier, F., Zhu, C., Ruan, R., Blanc, S. F., Patel, T. S., Worthington, C. M., Glasner, D. R., et al. (2022). SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. Nature Communications 13(1): 7630. https://doi.org/10.1038/s41467-022-34910-5

Boros, L. G., Kyriakopoulos, A. M., Brogna, C., Piscopo, M., McCullough, P. A., & Seneff, S. (2024). Long-lasting, biochemically modified mRNA, and its frameshifted recombinant spike proteins in human tissues and circulation after COVID-19 vaccination. Pharmacology Research & Perspectives, 12(3), e1218. https://doi.org/10.1002/prp2.1218

Cavanna, L., Grassi, S. O., Ruffini, L., Michieletti, E., Carella, E., Palli, D., Zangrandi, A., Inzerilli, N., Bernuzzi, P., Di Nunzio, C., et al. (2023). Non-Hodgkin lymphoma developed shortly after mRNA COVID-19 vaccination: Report of a case and review of the literature. Medicina (Kaunas), 59(1), 157. https://doi.org/10.3390/medicina59010157

Choueiri, T. K., Labaki, C., Bakouny, Z., Hsu, C. Y., Schmidt, A. L., de Lima Lopes, G. Jr., Hwang, C., Singh, S. R. K., Jani, C., Weissmann, L. B., et al. (2023). Breakthrough SARS-CoV-2 infections among patients with cancer following two and three doses of COVID-19 mRNA vaccines: a retrospective observational study from the COVID-19 and Cancer Consortium. The Lancet Regional Health, 19, 100445. https://doi.org/10.1016/j.lana.2023.100445

Chougnet, C. A., Tripathi, P., Lages, C. S., Raynor, J., Sholl, A., Fink, P., Plas, D. R., & Hildeman, D. A. (2011). A major role for Bim in regulatory T cell homeostasis. Journal of Immunology, 186(1), 156-63. https://doi.org/10.4049/jimmunol.1001505

Cinat, D., Coppes, R. P., & Barazzuol, L. (2021). DNA Damage-induced inflammatory microenvironment and adult stem cell response. Frontiers in Cell and Developmental Biology, 9, 729136. https://doi.org/10.3389/fcell.2021.729136

Co, M., Wong, P. C. P., & Kwong, A. (2022). COVID-19 vaccine associated axillary lymphadenopathy - A systematic review. Cancer Treatment and Research Communications, 31, 100546. https://doi.org/10.1016/j.ctarc.2022.100546

Colunga Biancatelli, R. M. L., Solopov, P. A., Sharlow, E. R., Lazo, J. S., Marik, P. E., & Catravas, J. D. (2021). The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 321(2), L477-L484. https://doi.org/10.1152/ajplung.00223.2021

Cunningham, L., Kimber, I., Basketter, D., Simmonds, P., McSweeney, S., Tziotzios, C., & McFadden, J. P. (2021). Perforin, COVID-19 and a possible pathogenic auto-inflammatory feedback loop. Scandinavian Journal of Immunology, 94(5), e13102. https://doi.org/10.1111/sji.13102

Daniels, M. A., Luera, D., & Teixeiro, E.( 2023). NFκB signaling in T cell memory. Frontiers in Immunology, 14, 1129191. https://doi.org/10.3389/fimmu.2023.1129191

Dejaco, C., Duftner, C., Grubeck-Loebenstein, B., & Schirmer, M. (2006). Imbalance of regulatory T cells in human autoimmune diseases. Immunology, 117(3), 289-300. https://doi.org/10.1111/j.1365-2567.2005.02317.x

Deng, W., Feng, X., Li, X., Wang, D., & Sun, L. (2016). Hypoxia-inducible factor 1 in autoimmune diseases. Cellular Immunology, 303, 7-15. https://doi.org/10.1016/j.cellimm.2016.04.001

Diani, S., Leonardi, E., Cavezzi, A., Ferrari, S., Iacono, O., Limoli, A., Bouslenko, Z., Natalini, D., Conti, S., Mantovani, M., Tramonte, S., Donzelli, A., & Serravalle, E. (2022). SARS-CoV-2 - the role of natural immunity: A narrative review. Journal of Clinical Medicine, 11(21), 6272. https://doi.org/10.3390/jcm11216272

Diblasi, L., Monteverde, M., Nonis, D., & Sangorrín, M. (2024). At least 55 undeclared chemical elements found in COVID-19 vaccines from AstraZeneca, CanSino, Moderna, Pfizer, Sinopharm and Sputnik V, with precise ICP-MS. International Journal of Vaccine Theory, Practice, and Research, 3(2), 1367–1393. https://doi.org/10.56098/mt1njj52

Dominic, A., Le, N. T., & Takahashi, M. (2022). Loop Between NLRP3 Inflammasome and Reactive Oxygen Species. Antioxidants & Redox Signaling, 36(10-12), 784-796. https://doi.org/10.1089/ars.2020.8257

Enoksson, S. L., Grasset, E. K., Hägglöf, T., Mattsson, N., Kaiser, Y., Gabrielsson, S., McGaha, T. L., Scheynius, A., & Karlsson, M. C. (2011). The inflammatory cytokine IL-18 induces self-reactive innate antibody responses regulated by natural killer T cells. Proceedings of the National Academy of Sciences USA, 108(51), E1399-407. https://doi.org/10.1073/pnas.1107830108

Fatima, Z., Reece, B. R. A., Moore, J. S., & Means, R. T. Jr. (2022). Autoimmune Hemolytic Anemia After mRNA COVID Vaccine. Journal of Investigative Medicine High Impact Case Reports, 10, 23247096211073258. https://doi.org/10.1177/23247096211073258

Fontes-Dantas, F. L., Fernandes, G. G., Gutman, E. G., De Lima, E. V., Antonio, L. S., Hammerle, M. B., Mota-Araujo, H. P., Colodeti, L. C., Araújo, S. M. B., Froz, G. M., et al. (2023). SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Reports, 42(3), 112189. https://doi.org/10.1016/j.celrep.2023.112189

Forster, J. III, Nandi, D., & Kulkarni, A. (2022). mRNA-carrying lipid nanoparticles that induce lysosomal rupture activate NLRP3 inflammasome and reduce mRNA transfection efficiency. Biomaterials Science, 10, 5566-82. https://doi.org/10.1039/d2bm00883a

Fraiman, J., Erviti, J., Jones, M., Greenland, S., Whelan, P., Kaplan, R. M., & Doshi, P. (2022). Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine, 40(40), 5798-5805. https://doi.org/10.1016/j.vaccine.2022.08.036

Freitas, R. S., Crum, T. F., & Parvatiyar, K. (2022). SARS-CoV-2 spike antagonizes innate antiviral immunity by targeting interferon regulatory factor 3. Frontiers in Cellular and Infection Microbiology, 11, 789462. https://doi.org/10.3389/fcimb.2021.789462

Fujinami, R. S., von Herrath, M. G., Christen, U., Whitton, J. L. (2006). Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clinical Microbiology Reviews 19(1), 80-94. https://doi.org/10.1128/CMR.19.1.80-94.2006

Gadi, S. R. V., Brunker, P. A. R., Al-Samkari, H., Sykes, D. B., Saff, R. R., Lo, J., Bendapudi, P., Leaf, D. E., & Leaf, R. K. (2021). Severe autoimmune hemolytic anemia following receipt of SARS-CoV-2 mRNA vaccine. Transfusion, 61(11), 3267-3271. https://doi.org/10.1111/trf.16672

Gangaplara, A., Martens, C., Dahlstrom, E., Metidji, A., Gokhale, A. S., Glass, D. D., Lopez-Ocasio, M., Baur, R., Kanakabandi, K., Porcella, S. F., & Shevach, E. M. (2018). Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PLoS Pathogens, 14(4), e1006985. https://doi.org/10.1371/journal.ppat.1006985

Gantier, M. P. & Williams, B. R. (2007). The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Reviews, 18(5-6), 363-71. https://doi.org/10.1016/j.cytogfr.2007.06.016

Gao, F X., Wu, R. X., Shen, M. Y., Huang, J. J., Li, T. T., Hu, C., Luo, F. Y., Song, S. Y., Mu, S., Hao, Y. N., et al. (2022). Extended SARS-CoV-2 RBD booster vaccination induces humoral and cellular immune tolerance in mice. iScience, 25(12), 105479. https://doi.org/10.1016/j.isci.2022.105479

Ghielmetti, M., Schaufelberger, H. D., Mieli-Vergani, G., Cerny, A., Dayer, E., Vergani, D., & Terziroli Beretta-Piccoli, B. (2021). Acute autoimmune-like hepatitis with atypical anti-mitochondrial antibody after mRNA COVID-19 vaccination: A novel clinical entity? Journal of Autoimmunity, 123, 102706. https://doi.org/10.1016/j.jaut.2021.102706

Gil-Manso, S., Carbonell, D., López-Fernández, L., Miguens, I., Alonso, R., Buño, I., Muñoz, P., Ochando, J., Pion, M., & Correa-Rocha, R. (2021). Induction of high levels of specific humoral and cellular responses to SARS-CoV-2 after the administration of Covid-19 mRNA vaccines requires several days. Frontiers in Immunology, 12, 726960. https://doi.org/10.3389/fimmu.2021.726960

Goldman, S., Bron, D., Tousseyn, T., Vierasu, I., Dewispelaere, L., Heimann, P., Cogan, E., & Goldman, M. (2021). Rapid Progression of angioimmunoblastic T cell lymphoma following BNT162b2 mRNA vaccine booster shot: A case report. Frontiers in Medicine (Lausanne), 8, 798095. https://doi.org/10.3389/fmed.2021.798095

Gonzalez-Dias, P., Lee, E. K., Sorgi, S., de Lima, D. S., Urbanski, A. H., Silveira, E. L., & Nakaya, H. I. (2020). Methods for predicting vaccine immunogenicity and reactogenicity. Human Vaccines & Immunotherapeutics, 16(2), 269-276. https://doi.org/10.1080/21645515.2019.1697110

Granadier, D., Cooper, K., Kinsella, S., Evandy, C., Iovino, L., DeRoos, P., Shannon-Sevillano, S., Acenas, D. D., & Dudakov, J. A. (2022). Interleukin 18 suppresses regeneration of the thymus. Blood, 140(Suppl 1), 116901170. https://doi.org/10.1182/blood-2022-168432

Grinberg-Bleyer, Y., Oh, H., Desrichard, A., Bhatt, D. M., Caron, R., Chan, T. A., Schmid, R. M., Klein, U., Hayden, M. S., & Ghosh, S. (2017). NF-κB c-Rel Is Crucial for the Regulatory T cell immune checkpoint in cancer. Cell, 170(6), 1096-1108.e13. https://doi.org/10.1016/j.cell.2017.08.004

Gui, J., Zhu, X., Dohkan, J., Cheng, L., Barnes, P. F., & Su, D. M. (2007). The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. International Immunology, 19(10), 1201-11. https://doi.org/10.1093/intimm/dxm095

Guo, M., Liu, X., Chen, X., & Li, Q. (2023). Insights into new-onset autoimmune diseases after COVID-19 vaccination. Autoimmunity Reviews, 22(7), 103340. https://doi.org/10.1016/j.autrev.2023.103340

Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., Péré, H., Charbit. B., Bondet, V., Chenevier-Gobeaux, C., et al. (2020). Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 369(6504), 718-724. https://doi.org/10.1126/science.abc6027

Hatzioannou, A., Boumpas, A., Papadopoulou, M., Papafragkos, I., Varveri, A., Alissafi, T., & Verginis, P. (2021). Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle. Frontiers in Immunology, 12, 731947. https://doi.org/10.3389/fimmu.2021.731947

Horwitz, D. A., Zheng, S. G., Wang, J., & Gray, J. D. (2008). Critical role of IL-2 and TGF-beta in generation, function and stabilization of Foxp3+CD4+ Treg. European Journal of Immunology, 38(4), 912-5 https://doi.org/10.1002/eji.200738109

Huang, C. F., Chen, L., Li, Y. C., Wu, L., Yu, G. T., Zhang, W. F., & Sun, Z. J. (2017). NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research, 36(1), 116. https://doi.org/10.1186/s13046-017-0589-y

Huang, C. F., Hsieh, S. M., Pan, S. C., Huang, Y. S., & Chang, S. C. (2021). Dose-related aberrant inhibition of intracellular perforin expression by S1 subunit of spike glycoprotein that contains receptor-binding domain from SARS-CoV-2. Microorganisms, 9(6), 1303. https://doi.org/10.3390/microorganisms9061303

Hussain, A., Augustine, S. W., Pyakurel, S., Vempalli, H., Dabbara, R., O'dare, R. A., Ayush Varghese, J. J., Inban, P., Jayan, M., Osigwe, E. C., Sunkara, S. M., & Khan, A. (2024). Acute pancreatitis induced by COVID-19 vaccine: A systematic review. Cureus, 16(3), e55426. https://doi.org/10.7759/cureus.55426

Iglesias-Escudero, M., Arias-González, N., & Martínez-Cáceres, E. (2023). Regulatory cells and the effect of cancer immunotherapy. Molecuar Cancer, 22, 26. https://doi.org/10.1186/s12943-023-01714-0

Irrgang, P., Gerling, J., Kocher, K., Lapuente, D., Steininger, P., Habenicht, K., Wytopil, M., Beileke, S., Schäfer, S., Zhong, J., et al. (2023). Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Science Immunology, 8(79), eade2798. https://doi.org/10.1126/sciimmunol.ade2798

Iwai, Y., Hemmi, H., Mizenina, O., Kuroda, S., Suda, K., & Steinman, R. M. (2008). An IFN-gamma-IL-18 signaling loop accelerates memory CD8+ T cell proliferation. PLoS One, 3(6), e2404. https://doi.org/10.1371/journal.pone.0002404

Jagger, A., Shimojima, Y., Goronzy, J. J., & Weyand, C. M. (2014). Regulatory T cells and the immune aging process: a mini-review. Gerontology, 60(2), 130-7. https://doi.org/10.1159/000355303

Jung, H. N., Lee, S. Y., Lee, S., Youn, H., & Im, H. J. (2022). Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging. Theranostics, 12(17), 7509-7531. https://doi.org/10.7150/thno.77259

Kadali, R. A. K., Janagama, R., Yedlapati, S. H., Kanike, N., Gajula, V., Madathala, R. R., Poddar, S., Sukka, N., Jogu, H. R., Racherla, S., & Shah, I. (2022). Side effects of messenger RNA vaccines and prior history of COVID-19, a cross-sectional study. American Journal of Infection Control, 50(1), 8-14. https://doi.org/10.1016/j.ajic.2021.10.017

Kalfaoglu, B., Almeida-Santos, J., Tye, C. A., Satou, Y., & Ono, M. (2020). T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis. Frontiers in Immunology, 11, 589380. https://doi.org/10.3389/fimmu.2020.589380

Kanduc, D. (2020). From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies, 9, 33. https://doi.org/10.3390/antib9030033

Kasper, I. R., Apostolidis, S. A., Sharabi, A., & Tsokos, G. C. (2016). Empowering Regulatory T Cells in Autoimmunity. Trends in Molecular Medicine, 22(9), 784-797. https://doi.org/10.1016/j.molmed.2016.07.003

Keeton, R., Tincho, M. B., Ngomti, A., Baguma, R., Benede, N., Suzuki, A., Khan, K., Cele, S., Bernstein, M., Karim, F., et al. (2022). T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature, 603(7901), 488-492. https://doi.org/10.1038/s41586-022-04460-3 Erratum in: Nature, 604(7907), E25, 2022. https://doi.org/10.1038/s41586-022-04708-y

Khan, S., Shafiei, M. S., Longoria, C., Schoggins, J. W., Savani, R. C., & Zaki, H. (2021). SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife, 10, e68563. https://doi.org/10.7554/eLife.68563

Khantakova, J. N., Bulygin, A. S., & Sennikov, S. V. (2022). The regulatory-T-cell memory phenotype: What we know. Cells, 11(10), 1687. https://doi.org/10.3390/cells11101687

Kiszel, P., Sík, P., Miklós, J., Kajdácsi, E., Sinkovits, G., Cervenak, L., & Prohászka, Z. (2023). Class switch towards spike protein-specific IgG4 antibodies after SARS-CoV-2 mRNA vaccination depends on prior infection history. Scientific Reports, 13(1), 13166. https://doi.org/10.1038/s41598-023-40103-x

Kolumam, G. A., Thomas, S., Thompson, L. J., Sprent, J., & Murali-Krishna, K. (2005). Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. Journal of Experimental Medicine, 202(5), 637-50. https://doi.org/10.1084/jem.20050821

Kountouras, J., Tzitiridou-Chatzopoulou, M., Papaefthymiou, A., Chatzopoulos, D., & Doulberis, M. (2023). COVID-19 mRNA vaccine effectiveness against elderly frail people. Medicina (Kaunas) 59(2), 202. https://doi.org/10.3390/medicina59020202

Kronenberg, M. & Rudensky, A. (2005). Regulation of immunity by self-reactive T cells. Nature, 435, 598604. https://doi.org/10.1038/nature03725

Kumar, P, Bhattacharya, P., & Prabhakar, B. S. (2018). A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. Journal of Autoimmunity, 95, 77-99. https://doi.org/10.1016/j.jaut.2018.08.007

Kusuda, T., Uchida, K., Miyoshi, H., Koyabu, M., Satoi, S., Takaoka, M., Shikata, N., Uemura, Y., & Okazaki, K. (2011). Involvement of inducible costimulator- and interleukin 10-positive regulatory T cells in the development of IgG4-related autoimmune pancreatitis. Pancreas, 40(7), 1120-30. https://doi.org/10.1097/MPA.0b013e31821fc796

Kyriakopoulos, A M., McCullough, P. A., Nigh, G., & Seneff, S. (2022). Potential mechanisms for human genome integration of genetic code from SARS-CoV-2 mRNA vaccination: implications for disease. Journal of Neurological Disorders, 10, 519. https://doi.org/10.22541/au.166203678.82079667/v1

Kyriakopoulos, A. M., Nigh, G., McCullough, P. A., Olivier, M. D., & Seneff, S. (2023). Bell's palsy or an aggressive infiltrating basaloid carcinoma post-mRNA vaccination for COVID-19? A case report and review of the literature. Experimental and Clinical Sciences, 22, 992-1011. https://doi.org/10.17179/excli2023-6145

Larkin, J. 3rd., Ahmed, C. M., Wilson, T. D., & Johnson, H. M. (2013). Regulation of interferon gamma signaling by suppressors of cytokine signaling and regulatory T cells. Frontiers in Immunology, 4, 469. https://doi.org/10.3389/fimmu.2013.00469

Lasagna, A., Lilleri, D., Agustoni, F., Percivalle, E., Borgetto, S., Alessio, N., Comolli, G., Sarasini, A., Bergami, F., Sammartino, J. C., et al. (2022). Analysis of the humoral and cellular immune response after a full course of BNT162b2 anti-SARS-CoV-2 vaccine in cancer patients treated with PD-1/PD-L1 inhibitors with or without chemotherapy: an update after 6 months of follow-up. ESMO Open, 7(1), 100359. https://doi.org/10.1016/j.esmoop.2021.100359

Lee, A. R., Woo, J. S., Lee, S. Y., Lee, Y. S., Jung, J., Lee, C. R., Park, S. H., & Cho, M. L. (2023). SARS-CoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis. Cell Communication and Signaling, 21(1), 44. https://doi.org/10.1186/s12964-023-01044-0

Lee, J., Ahn, E., Kissick, H. T., & Ahmed, R. (2015). Reinvigorating exhausted T cells by blockade of the PD-1 pathway. For Immunopathology Disease Therapy, 6(1-2), 7-17. https://doi.org/10.1615/ForumImmunDisTher.2015014188

Lee, K. A., Flores, R. R., Jang, I. H., Saathoff, A., & Robbins, P. D. (2022). Immune senescence, immunosenescence and aging. Frontiers in Aging, 3, 900028. https://doi.org/10.3389/fragi.2022.900028

Lee, S. E., Li, X., Kim, J. C., Lee, J., González-Navajas, J. M., Hong, S. H., Park, I. K., Rhee, J. H., & Raz, E. (2012). Type I interferons maintain Foxp3 expression and T-regulatory cell functions under inflammatory conditions in mice. Gastroenterology,143(1), 145-54. https://doi.org/10.1053/j.gastro.2012.03.042 Erratum in: Gastroenterology, 144(5), 1157, 2013.

Levings, M. K., Bacchetta, R., Schulz, U., & Roncarolo, M. G. (2002). The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. International Archives of Allergy and Immunology, 129(4), 263-76. https://doi.org/10.1159/000067596

Li, F., Li, J., Wang, P. H., Yang, N., Huang, J., Ou, J., Xu, T., Zhao, X., Liu, T., Huang, X., et al. (2021). SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1867(12), 166260. https://doi.org/10.1016/j.bbadis.2021.166260

Li, J., Park, J., Foss, D., & Goldschneider, I. (2009). Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. Journal of Experimental Medicine, 206(3), 607-22. https://doi.org/10.1084/jem.20082232

Liang, S., Bao, C., Yang, Z., Liu, S., Sun, Y., Cao, W., Wang, T., Schwantes-An, T.-H., Choy, J. S., Naidu, S., et al. (2023). SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation via reduced mitophagy. Signal Transduction and Targeted Therapy, 8, 108. https://doi.org/10.1038/s41392-023-01368-w

Lima, H. Jr., Jacobson, L. S., Goldberg, M. F., Chandran, K., Diaz-Griffero, F., Lisanti, M. P., & Brojatsch, J. (2013). Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle, 12(12), 1868-78. https://doi.org/10.4161/cc.24903

Liu, J., Wang, J., Xu, J., Xia, H., Wang, Y., Zhang, C., Chen, W., Zhang, H., Liu, Q., Zhu, R., et al. (2021). Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discovery, 7(1), 99. https://doi.org/10.1038/s41421-021-00329-3

Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, 17023. https://doi.org/10.1038/sigtrans.2017.23

Liu, Z., Liang, Q., Ren, Y., Guo, C., Ge, X., Wang, L., Cheng, Q., Luo, P., Zhang, Y., & Han, X. (2023). Immunosenescence: molecular mechanisms and diseases. Signal Transduction and Targeted Therapy, 8(1), 200. https://doi.org/10.1038/s41392-023-01451-2

Loacker, L., Kimpel, J., Bánki, Z., Schmidt, C. Q., Griesmacher, A., & Anliker, M. (2022). Increased PD-L1 surface expression on peripheral blood granulocytes and monocytes after vaccination with SARS-CoV2 mRNA or vector vaccine. Clinical Chemistry and Laboratory Medicine, 61(1), e17-e19. https://doi.org/10.1515/cclm-2022-0787. PMID: 36245120

Lourenço, E. V. & La Cava, A. (2011). Natural Regulatory T cells in autoimmunity. Autoimmunity, 44(1), 33-42. https://doi.org/10.3109/08916931003782155

Lozano-Ojalvo, D., Camara, C., Lopez-Granados, E., Nozal, P., Del Pino-Molina, L., Bravo-Gallego, L. Y., Paz-Artal, E., Pion, M., Correa-Rocha. R., Ortiz, A., et al. (2021). Differential effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in naive and COVID-19 recovered individuals. Cell Reports, 36(8), 109570. https://doi.org/10.1016/j.celrep.2021.109570

Lu, C., Zanker, D., Lock, P., Jiang, X., Deng, J., Duan, M., Liu, C., Faou, P., Hickey, M. J., & Chen, W. (2019). Memory regulatory T cells home to the lung and control influenza A virus infection. Immunology & Cell Biology, 97(9), 774-786. https://doi.org/10.1111/imcb.12271

Lund, F. E. & Randall, T. D. (2010). Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nature Reviews Immunology, 10(4), 236-47. https://doi.org/10.1038/nri2729

Luo, C. T., Liao, W., Dadi, S., Toure, A., & Li, M. O. (2016). Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature, 529(7587), 532-6. https://doi.org/10.1038/nature16486

Lyons-Weiler, J. (2020). Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. Journal of Translational Autoimmunity 9, 3, 100051. https://doi.org/10.1016/j.jtauto.2020.100051

Maganto-García, E., Bu, D. X., Tarrio, M. L., Alcaide, P., Newton, G., Griffin, G. K., Croce, K. J., Luscinskas, F. W., Lichtman, A. H., & Grabie, N. (2011). Foxp3+-inducible regulatory T cells suppress endothelial activation and leukocyte recruitment. Journal of Immunology, 187(7), 3521-9. https://doi.org/10.4049/jimmunol.1003947

Mallikarjuna, P., Raviprakash, T. S., Aripaka, K., Ljungberg, B., & Landström, M. (2019). Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle, 18(17), 2141-2156. https://doi.org/10.1080/15384101.2019.1642069

Manel, N., Unutmaz, D, & Littman, D. R. (2008). The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nature Immunology, 9(6), 641-9. https://doi.org/10.1038/ni.1610

Mead, M. N., Seneff, S., Rose, J., Wolfinger, R., McCullough, P. A., & Hulscher, N. (2024a). COVID-19 modified mRNA “vaccines”: Lessons learned from clinical trials, mass vaccination, and the bio-pharmaceutical complex, Part 2. International Journal of Vaccine Theory, Practice, and Research, 3(2), 1275–1344. https://doi.org/10.56098/w66wjg87

Mead, M. N., Seneff, S., Wolfinger, R., Rose, J., Denhaerynck, K., Kirsch, S., & McCullough, P. A. (2024b). COVID-19 modified mRNA “vaccines”: Lessons learned from clinical trials, mass vaccination, and the bio-pharmaceutical complex, Part 1. International Journal of Vaccine Theory, Practice, and Research, 3(2), 1112–1178. https://doi.org/10.56098/fdrasy50

Mishra, R. & Banerjea, A. C. (2021). SARS-CoV-2 spike targets USP33-IRF9 axis via exosomal miR-148a to activate human microglia. Frontiers in Immunology, 12, 656700. https://doi.org/10.3389/fimmu.2021.656700

Mizutani, M., Mitsui, H., Amano, T., Ogawa, Y., Deguchi, N., Shimada, S., Miwa, A., Kawamura, T., & Ogido, Y. (2022). Two cases of axillary lymphadenopathy diagnosed as diffuse large B-cell lymphoma developed shortly after BNT162b2 COVID-19 vaccination. Journal of the European Academy of Dermatology and Venereology, 36(8), e613-e615. https://doi.org/10.1111/jdv.18136

Mohiddin, S. A., Guttmann, O., & Marelli-Berg, F. (2022). Vaccine-triggered acute autoimmune myocarditis: Defining, detecting, and managing an apparently novel condition. Journal of the American Heart Association, 11(21), e026873. https://doi.org/10.1161/JAHA.122.026873

Morais, P., Adachi, H., & Yu, Y. T. (2021). The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Frontiers in Cell and Developmental Biology, 9, 789427. https://doi.org/10.3389/fcell.2021.789427

Murphy, W. J. & Longo, D. L. (2022). A possible role for anti-idiotype antibodies in SARS-CoV-2 infection and vaccination. New England Journal of Medicine, 386(4), 394-396. https://doi.org/10.1056/NEJMcibr2113694

Murray, S. E., Polesso, F., Rowe, A. M., Basak, S., Koguchi, Y., Toren, K. G., Hoffmann, A., & Parker, D. C. (2011). NF-κB–inducing kinase plays an essential T cell–intrinsic role in graft-versus-host disease and lethal autoimmunity in mice. Journal of Clinical Investigation, 121(12), 4775-86. https://doi.org/10.1172/JCI44943

Nance, K. D., & Meier, J. L. (2021). Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Central Science, 7(5), 748–756. Netti, G. S., Infante, B., Troise, D., Mercuri, S., Panico, M., Spadaccino, F., Catalano, V., Gigante, M., Simone, S., Pontrelli, P., et al. (2022). mTOR inhibitors improve both humoral and cellular response to SARS-CoV-2 messenger RNA BNT16b2 vaccine in kidney transplant recipients. American Journal of Transplantation, 22(5), 1475-1482. https://doi.org/10.1111/ajt.16958 Epub 2022 Jan 28. Erratum in: American Journal of Transplantation, 2022,, 22(12), 3190. https://doi.org/10.1111/ajt.17214

Nicolò, A., Amendt, T., El Ayoubi, O., Young, M., Finzel, S., Senel, M., Voll, R. E., & Jumaa, H. (2022). Rheumatoid factor IgM autoantibodies control IgG homeostasis. Frontiers in Immunology, 13, 1016263. https://doi.org/10.3389/fimmu.2022.1016263 Erratum in: Frontiers in Immunology, 13, 1123117, 2022. https://doi.org/10.3389/fimmu.2022.1123117

Nunes-Alves, C., Nobrega, C., Behar, S. M., & Correia-Neves, M. (2013). Tolerance has its limits: how the thymus copes with infection. Trends in Immunology, 34(10), 502-10. https://doi.org/10.1016/j.it.2013.06.004

Oh, H., Grinberg-Bleyer, Y., Liao, W., Maloney, D., Wang, P., Wu, Z., Wang, J., Bhatt, D. M., Heise, N., Schmid, R. M., et al. (2017). An NF-κB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity, 47(3), 450-465.e5. https://doi.org/10.1016/j.immuni.2017.08.010

Ohue, Y. & Nishikawa, H. (2019). Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Science, 110(7), 2080-2089, https://doi.org/10.1111/cas.14069

Omland, S. H., Nielsen, P. S., Gjerdrum, L. M., & Gniadecki, R. (2016). Immunosuppressive environment in basal cell carcinoma: The role of regulatory T cells. Acta Dermato-Venereologica, 96(7), 917-921. https://doi.org/10.2340/00015555-2440

Ostrand-Rosenberg, S., Horn, L. A., & Haile, S. T. (2014). The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. Journal of Immunology, 193(8), 3835-41. https://doi.org/10.4049/jimmunol.1401572

Özbay Kurt, F. G., Lepper, A., Gerhards, C., Roemer, M., Lasser, S., Arkhypov, I., Bitsch, R., Bugert, P., Altevogt, P., Gouttefangeas, C., Neumaier, M., Utikal, J., & Umansky, V. (2022). Booster dose of mRNA vaccine augments waning T cell and antibody responses against SARS-CoV-2. Frontiers in Immunology, 13, 1012526. https://doi.org/10.3389/fimmu.2022.1012526

Palakkott, A. R., Alneyadi, A., Muhammad, K., Eid, A. H., Amiri, K. M. A., Akli Ayoub, M., & Iratni, R. (2023). The SARS-CoV-2 spike protein activates the epidermal growth factor receptor-mediated signaling. Vaccines (Basel), 11(4), 768. https://doi.org/10.3390/vaccines11040768

Patra, T., Meyer, K., Geerling, L., Isbell, T. S., Hoft, D. F., Brien, J., Pinto, A. K., Ray, R. B., & Ray, R. (2020). SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathogens, 16(12), e1009128. https://doi.org/10.1371/journal.ppat.1009128

Peligero-Cruz, C., Givony, T., Sebé-Pedrós, A., Dobeš, J., Kadouri, N., Nevo, S., Roncato, F., Alon, R., Goldfarb, Y., & Abramson, J. (2020). IL18 signaling promotes homing of mature Tregs into the thymus. Elife, 9, e58213. https://doi.org/10.7554/eLife.58213

Pellerin, L., Jenks, J. A., Bégin, P., Bacchetta, R., & Nadeau, K. C. (2014). Regulatory T cells and their roles in immune dysregulation and allergy. Immunologic Research, 58(2-3), 358-68. https://doi.org/10.1007/s12026-014-8512-5

Pesce, B., Soto, L., Sabugo, F., Wurmann, P., Cuchacovich, M., López, M. N., Sotelo, P. H., Molina, M. C., Aguillón, J. C., & Catalán, D. (2013). Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clinical and Experimental Immunology, 171(3), 237-42. https://doi.org/10.1111/cei.12017

Phulphagar, K., Kühn, L. I., Ebner, S., Frauenstein, A., Swietlik, J. J., Rieckmann, J., & Meissner, F. P (2021). Proteomics reveals distinct mechanisms regulating the release of cytokines and alarmins during pyroptosis. Cell Reports, 34(10), 108826. https://doi.org/10.1016/j.celrep.2021.108826

Platanias, L. (2005). Mechanisms of type-I- and type-II-interferon-mediated signaling. Nature Reviews Immunology, 5, 375-386. https://doi.org/10.1038/nri1604

Pollizzi, K. N., Patel, C. H., Sun, I. H., Oh, M. H., Waickman, A. T., Wen, J., Delgoffe, G. M., & Powell, J. D. (2015). mTORC1 and mTORC2 selectively regulate CD8⁺ T cell differentiation. Journal of Clinical Investigation, 125(5), 2090-108. https://doi.org/10.1172/JCI77746

Prieto-Fernández, E., Egia-Mendikute, L., Vila-Vecilla, L., Bosch, A., Barreira-Manrique, A., Lee, S. Y., García-Del Río, A., Antoñana-Vildosola, A., Jiménez-Lasheras, B., Moreno-Cugnon, L., et al. (2021). Hypoxia reduces cell attachment of SARS-CoV-2 spike protein by modulating the expression of ACE2, neuropilin-1, syndecan-1 and cellular heparan sulfate. Emerging Microbes & Infections, 10(1), 1065-1076. https://doi.org/10.1080/22221751.2021.1932607

Qian, J., Wang, C., Wang, B., Yang, J., Wang, Y., Luo, F., Xu, J., Zhao, C., Liu, R., & Chu, Y. (2018). The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. Journal of Neuroinflammation, 15(1), 290. https://doi.org/10.1186/s12974-018-1330-2

Raviv, Y., Betesh-Abay, B., Valdman-Grinshpoun, Y., Boehm-Cohen, L., Kassirer, M., & Sagy, I. (2022). First Presentation of Systemic Lupus Erythematosus in a 24-Year-Old Male following mRNA COVID-19 Vaccine. Case Reports in Rheumatology, 2022, 9698138. https://doi.org/10.1155/2022/9698138

Raw, R. K., Rees, J., Kelly, C. A., Wroe, C., & Chadwick, D. R. (2022). Prior COVID-19 infection is associated with increased Adverse Events (AEs) after the first, but not the second, dose of the BNT162b2/Pfizer vaccine. Vaccine, 40(3), 418-423. https://doi.org/10.1016/j.vaccine.2021.11.090

Robles, J. P., Zamora, M., Adan-Castro, E., Siqueiros-Marquez, L., Martinez de la Escalera, G., & Clapp, C. (2022). The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. Journal of Biological Chemistry, 298(3), 101695. https://doi.org/10.1016/j.jbc.2022.101695

Rocamora-Reverte, L., Melzer, F. L., Würzner, R., & Weinberger, B. (2021). The complex role of regulatory T cells in immunity and aging. Frontiers in Immunology, 11, 616949. https://doi.org/10.3389/fimmu.2020.616949

Rodríguez-Jiménez, P., Chicharro, P., Cabrera, L. M., Seguí, M., Morales-Caballero, Á., Llamas-Velasco, M., & Sánchez-Pérez, J. (2021). Varicella-zoster virus reactivation after SARS-CoV-2 BNT162b2 mRNA vaccination: Report of 5 cases. JAAD Case Reports, 12, 58-59. https://doi.org/10.1016/j.jdcr.2021.04.014

Roh, J. H., Jung, I., Suh, Y., & Kim, M. H. (2024). A potential association between COVID-19 vaccination and development of Alzheimer's disease. QJM, hcae103. Epub ahead of print. https://doi.org/10.1093/qjmed/hcae103

Rosenblum, M. D., Way, S. S., & Abbas, A. K. (2016). Regulatory T cell memory. Nature Reviews Immunology, 16(2): 90-101, https://doi.org/10.1038/nri.2015.1

Rosichini, M., Bordoni, V., Silvestris, D. A., Mariotti, D., Matusali, G., Cardinale, A., Zambruno, G., Condorelli, A. G., Flamini, S., Genah, S., et al. (2023). SARS-CoV-2 infection of thymus induces loss of function that correlates with disease severity. Journal of Allergy and Clinical Immunology, 151(4), 911-921. https://doi.org/10.1016/j.jaci.2023.01.022

Rubio-Casillas, A., Cowley, D., Raszek, M., Uversky, V. N., & Redwan, E. M. (2024). Review: N1-methyl-pseudouridine (m1Ψ): friend or foe of cancer? International Journal of Biological Macromolecules, 267(Pt 1), 131427. https://doi.org/10.1016/j.ijbiomac.2024.131427

Rukavina, D., Laskarin, G., Rubesa, G., Strbo, N., Bedenicki, I., Manestar, D., Glavas, M., Christmas, S. E., & Podack, E. R. (1998). Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells. Blood, 92(7), 2410-20. https://pubmed.ncbi.nlm.nih.gov/9746781/

Röltgen, K., Nielsen, S. C. A., Silva, O., Younes, S. F., Zaslavsky, M., Costales, C., Yang, F., Wirz, O. F., Solis, D., Hoh, R. A., et al. (2022). Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell, 185(6), 1025-1040.e14. https://doi.org/10.1016/j.cell.2022.01.018

Sakowska, J., Arcimowicz, Ł., Jankowiak, M., Papak, I., Markiewicz, A., Dziubek, K., Kurkowiak, M., Kote, S., Kaźmierczak-Siedlecka, K., Połom, K., Marek-Trzonkowska, N., & Trzonkowski, P. (2022). Autoimmunity and cancer - two sides of the same coin. Frontiers in Immunology, 13, 793234. https://doi.org/10.3389/fimmu.2022.793234

Saleh, R. & Elkord, E. (2020). FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Letters, 490, 174-185. https://doi.org/10.1016/j.canlet.2020.07.022

Samson, M., Audia, S., Janikashvili, N., Ciudad, M., Trad, M., Fraszczak, J., Ornetti, P., Maillefert, J. F., Miossec, P., & Bonnotte, B. (2012). Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis & Rheumatology, 64(8), 2499-503. https://doi.org/10.1002/art.34477

Sanchez, A. M. & Yang, Y. (2011). The role of natural regulatory T cells in infection. Immunologic Research, 49(1-3), 124-34. https://doi.org/10.1007/s12026-010-8176-8

Sanjabi, S., Oh, S. A., & Li, M. O. (2017. Regulation of the immune response by TGF-β: From conception to autoimmunity and infection. Cold Spring Harbor Perspectives in Biology, 9(6), a022236. https://doi.org/10.1101/cshperspect.a022236

Sansonetti, P. J., Phalipon, A., Arondel, J., Thirumalai, K., Banerjee, S., Akira, S., Takeda, K., & Zychlinsky, A. (2000). Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity, 12(5), 581-90. https://doi.org/10.1016/s1074-7613(00)80209-5

Santiago, D. (2024). A closer look at N1-methylpseudouridine in the modified mRNA injectables. International Journal of Vaccine Theory, Practice, and Research, 3(2), 1345–1366. https://doi.org/10.56098/5azda593

Schmidt, R., Grimbacher, B., & Witte, T. (2018). Autoimmunity and primary immunodeficiency: two sides of the same coin? Nature Reviews Rheumatology, 14, 7-18. https://doi.org/10.1038/nrrheum.2017.198

Schwab, C., Domke, L. M., Hartmann, L., Stenzinger, A., Longerich, T., & Schirmacher, P. (2023). Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clinical Research in Cardiology, 112(3), 431-440. https://doi.org/10.1007/s00392-022-02129-5

Sedegah, M., Porter, C., Goguet, E., Ganeshan, H., Belmonte, M., Huang, J., Belmonte, A., Inoue, S., Acheampong, N., Malloy, A. M. W., et al. (2022). Cellular interferon-gamma and interleukin-2 responses to SARS-CoV-2 structural proteins are broader and higher in those vaccinated after SARS-CoV-2 infection compared to vaccinees without prior SARS-CoV-2 infection. PLoS One, 17(10), e0276241. https://doi.org/10.1371/journal.pone.0276241

Seneff, S., Kyriakopoulos, A M., Nigh, G., & McCullough, P. A. (2023). A potential role of the spike protein in neurodegenerative diseases: A narrative review. Cureus, 15(2), e34872. https://doi.org/10.7759/cureus.34872

Seneff, S., Nigh, G., Kyriakopoulos, A. M., & McCullough, P. A. (2022). Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food & Chemical Toxicology, 164, 113008. https://doi.org/10.1016/j.fct.2022.113008

Shang, B., Liu, Y., Jiang, S. J., & Liu, Y. (2015). Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Scientific Reports, 5, 15179. https://doi.org/10.1038/srep15179

Shevyrev, D. & Tereshchenko, V. (2020). Treg Heterogeneity, function, and homeostasis. Frontiers in Immunology, 10, 3100. https://doi.org/10.3389/fimmu.2019.03100

Shimizu, J., Yamazaki, S., & Sakaguchi, S. (1999). Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. Journal of Immunology, 163(10), 5211-8. https://doi.org/10.4049/jimmunol.163.10.5211

Shimizu, Y., Newman, W., Gopal, T. V., Horgan, K. J., Graber, N., Beall, L. D., van Seventer, G. A., & Shaw, S. (1991). Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions. Journal of Cell Biology, 113(5), 1203-12. https://doi.org/10.1083/jcb.113.5.1203

Shroff, R. T., Chalasani, P., Wei, R., Pennington, D., Quirk, G., Schoenle, M. V., Peyton, K. L., Uhrlaub, J. L., Ripperger, T. J., Jergović, M., et al. (2011). Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors. Nature Medicine, 27(11), 2002-2011. https://doi.org/10.1038/s41591-021-01542-z

Simon, S. & Labarriere, N. (2017). PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology, 7(1), e1364828. https://doi.org/10.1080/2162402X.2017.1364828

Singh, N. & Bharara Singh, A. (2020). S2 subunit of SARS-nCoV-2 interacts with tumor suppressor protein p53 and BRCA: an in silico study. Translational Oncology, 13(10), 100814. https://doi.org/10.1016/j.tranon.2020.100814

Smigiel, K. S., Srivastava, S., Stolley, J. M., & Campbell, D. J. (2014). Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunological Reviews, 259(1), 40-59. https://doi.org/10.1111/imr.12170

Spiliopoulou, P., Janse van Rensburg, H. J., Avery, L., Kulasingam, V., Razak, A., Bedard, P., Hansen, A., Chruscinski, A., Wang, B., Kulikova, M., et al. (2023). Longitudinal efficacy and toxicity of SARS-CoV-2 vaccination in cancer patients treated with immunotherapy. Cell Death Discovery, 14(1), 49. https://doi.org/10.1038/s41419-022-05548-4

Spranger, S., Spaapen, R. M., Zha, Y., Williams, J., Meng, Y., Ha, T. T., & Gajewski, T. F. (2013). Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Science Translatonal Medicine, 5(200), 200ra116. https://doi.org/10.1126/scitranslmed.3006504

Sriwastava, S., Sharma, K., Khalid, S. H., Bhansali, S., Shrestha, A. K., Elkhooly, M., Srivastava, S., Khan, E., Jaiswal, S., & Wen, S. (2022). COVID-19 vaccination and neurological manifestations: a review of case reports and case series. Brain Science, 12(3), 407. https://doi.org/10.3390/brainsci12030407

Sung, S. S. (2008). Monocyte-derived dendritic cells as antigen-presenting cells in T-cell proliferation and cytokine production. Methods in Molecular Medicine, 138, 97-106. https://doi.org/10.1007/978-1-59745-366-0_9

Świerkot, J., Madej, M., Szmyrka, M., Korman, L., Sokolik, R., Andrasiak, I., Morgiel, E., & Sebastian, A. (2022). The Risk of Autoimmunity Development following mRNA COVID-19 Vaccination. Viruses, 14(12), 2655. https://doi.org/10.3390/v14122655

Tachita, T., Takahata, T., Yamashita, S., Ebina, T., Kamata, K., Yamagata, K., Tamai, Y., & Sakuraba, H. (2023). Newly diagnosed extranodal NK/T-cell lymphoma, nasal type, at the injected left arm after BNT162b2 mRNA COVID-19 vaccination. International Journal of Hematology, 118(4), 503-507. https://doi.org/10.1007/s12185-023-03607-w

Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., Shimizu, J., & Sakaguchi, S. (1998). Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. International Immunology, 10(12), 1969-80. https://doi.org/10.1093/intimm/10.12.1969. PMID: 9885918

Tanaka, A. & Sakaguchi, S. (2017). Regulatory T cells in cancer immunotherapy. Cell Research, 27, 109–118. https://doi.org/10.1038/cr.2016.151

Tang, Y. Y., Wang, D. C., Wang, Y. Q., Huang, A. F., & Xu, W. D. (2023). Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Frontiers in Immunology, 13, 1073971. https://doi.org/10.3389/fimmu.2022.1073971

Tarassishin, L., Suh, H. S., & Lee, S. C. (2011). Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. Journal of Neuroinflammation, 8, 187. https://doi.org/10.1186/1742-2094-8-187

Terrell, C. E. & Jordan, M. B. (2013). Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8(+) T cells and dendritic cells. Blood, 121(26), 5184-91. https://doi.org/10.1182/blood-2013-04-495309

Thiault, N., Darrigues, J., Adoue, V., Gros, M., Binet, B., Perals, C., Leobon, B., Fazilleau, N., Joffre, O. P., Robey, E. A. et al. (2015). Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nature Immunology, 16(6), 628-34. https://doi.org/10.1038/ni.3150

Thomas, R., Oh, J., Wang, W., & Su, D. M. (2021). Thymic atrophy creates holes in Treg-mediated immuno-regulation via impairment of an antigen-specific clone. Immunology, 163(4), 478-492. https://doi.org/10.1111/imm.13333

Thomas, R., Wang, W., & Su, D. M. (2020). Contributions of age-related thymic involution to immunosenescence and inflammaging. Immunity & Ageing, 17, 2. https://doi.org/10.1186/s12979-020-0173-8

Tormo, N., Navalpotro, D., Martínez-Serrano, M., Moreno, M., Grosson, F., Tur, I., Guna, M. R., Soriano, P., Tornero, A., & Gimeno, C. (2022). Commercial Interferon-gamma release assay to assess the immune response to first and second doses of mRNA vaccine in previously COVID-19 infected versus uninfected individuals. Diagnostic Microbiology and Infectious Disease, 102(4), 115573. https://doi.org/10.1016/j.diagmicrobio.2021.115573

Uchida, K. & Okazaki, K. (2022). Current status of type 1 (IgG4-related) autoimmune pancreatitis. Journal of Gastroenterology, 57(10), 695-708. https://doi.org/10.1007/s00535-022-01891-7

Uversky, V. N., Redwan, E. M., Makis, W., & Rubio-Casillas, A. (2023). IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines (Basel), 11(5), 991. https://doi.org/10.3390/vaccines11050991

Vadasz, Z., Haj, T., Kessel, A., & Toubi, E. (2013). Age-related autoimmunity. BMC Medicine 11: 94, https://doi.org/10.1186/1741-7015-11-94

Vidarsson, G., Dekkers, G., & Rispens, T. (2014). IgG subclasses and allotypes: from structure to effector functions. Frontiers in Immunology, 5, 520. https://doi.org/10.3389/fimmu.2014.00520

Wang, J., Liu, T., Chen, X., Jin, Q., Chen, Y., Zhang, L., Han, Z., Chen, D., Li, Y., Lv, Q., & Xie, M. (2021). Bazedoxifene regulates Th17 immune response to ameliorate experimental autoimmune myocarditis via inhibition of STAT3 activation. Frontiers in Pharmacology, 11, 613160. https://doi.org/10.3389/fphar.2020.613160

Wang, Y., van Boxel-Dezaire, A. H., Cheon, H., Yang, J., & Stark, G. R. (2013). STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proceedings of the National Academy of Sciences USA, 110(42), 16975-80. https://doi.org/10.1073/pnas.1315862110

Watad, A., De Marco, G., Mahajna, H., Druyan, A., Eltity, M., Hijazi, N., Haddad, A., Elias, M., Zisman, D., Naffaa, M. E., et al. (2021). Immune-mediated disease flares or new-onset disease in 27 subjects following mRNA/DNA SARS-CoV-2 vaccination. Vaccines (Basel), 9(5), 435. https://doi.org/10.3390/vaccines9050435

Won, T., Gilotra, N. A., Wood, M. K., Hughes, D. M., Talor, M. V., Lovell, J., Milstone, A. M, Steenbergen, C., & Čiháková, D. (2022). Increased interleukin 18-dependent immune responses are associated with myopericarditis after COVID-19 mRNA vaccination. Frontiers in Immunology, 13, 851620. https://doi.org/10.3389/fimmu.2022.851620

Wu, H., Li, X., Zhou, C., Yu, Q., Ge, S., Pan, Z., Zhao, Y., Xia, S., Zhou, X., Liu, X., et al. (2021). Circulating mature dendritic cells homing to the thymus promote thymic epithelial cells involution via the Jagged1/Notch3 axis. Cell Death Discovery, 7, 225. https://doi.org/10.1038/s41420-021-00619-5

Xu, H. C., Grusdat, M., Pandyra, A. A., Polz, R., Huang, J., Sharma, P., Deenen, R., Köhrer, K., Rahbar, R., Diefenbach, A., et al. (2014). Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity, 40(6), 949-60. https://doi.org/10.1016/j.immuni.2014.05.004

Xu, L., Zhang, T., Liu, Z., Li, Q., Xu, Z., & Ren, T. (2012). Critical role of Th17 cells in development of autoimmune hemolytic anemia. Experimental Hematology, 40(12), 994-1004.e4. https://doi.org/10.1016/j.exphem.2012.08.008

Xu, M., Pang, Q., Xu, S., Ye, C., Lei, R., Shen, Y., & Xu, J. (2017). Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts. Oncotarget, 9(3), 3188-3197. https://doi.org/10.18632/oncotarget.23225

Yasuda, K., Takeuchi, Y., & Hirota, K. (2019).The pathogenicity of Th17 cells in autoimmune diseases. Seminars in Immunopathology, 41(3), 283-297. https://doi.org/10.1007/s00281-019-00733-8

Yonker, L. M., Gilboa, T., Ogata, A. F., Senussi, Y., Lazarovits, R., Boribong, B. P., Bartsch, Y. C., Loiselle, M., Rivas, M. N., Porritt, R. A., et al. (2021). Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. Journal of Clinical Investigation 131(14), e149633. https://doi.org/10.1172/JCI149633

Yonker, L. M., Swank, Z., Bartsch, Y. C., Burns, M. D., Kane, A., Boribong, B. P., Davis, J. P., Loiselle, M., Novak, T., Senussi, Y., et al. (2023). Circulating spike protein detected in post-COVID-19 mRNA vaccine myocarditis. Circulation, 147(11), 867-876. https://doi.org/10.1161/CIRCULATIONAHA.122.061025

Yoshimoto, N., Yanagi, A., Takayama, S., Sakamoto, M., Tomoda, K., Ishikawa, K., Takura, K., Kawate, A., Takayama, S., Yamashita, M., et al. (2022). Timing and duration of axillary lymph node swelling after COVID-19 vaccination: Japanese case report and literature review. In Vivo, 36(3), 1333-1336. https://doi.org/10.21873/invivo.12834

Youm, Y. H., Kanneganti, T. D., Vandanmagsar, B., Zhu, X., Ravussin, A., Adijiang, A., Owen, J. S., Thomas, M. J., Francis, J., Parks, J. S., et al. (2012). The Nlrp3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Reports, 1(1), 56-68. https://doi.org/10.1016/j.celrep.2011.11.005

Yu, A., Zhu, L., Altman, N. H., & Malek, (2009a). T. R. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity, 30, 20417. https://doi.org/10.1016/j.immuni.2008.11.014

Yu, H., Pardoll, D., & Jove, R. (2009b). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer, 9(11), 798-809. https://doi.org/10.1038/nrc2734

Yu, T., Wu, Y., Liu, J., Zhuang, Y., Jin, X., & Wang, L. (2022). The risk of malignancy in patients with IgG4-related disease: a systematic review and meta-analysis. Arthritis Research & Therapy, 24(1), 14. https://doi.org/10.1186/s13075-021-02652-2

Zach, M. & Greslehner, G. P. (2023). Understanding immunity: an alternative framework beyond defense and strength. Biology & Philosophy 38(1), 7. https://doi.org/10.1007/s10539-023-09893-2

Zaleska, J., Kwasnik, P., Paziewska, M., Purkot, J., Szabelak, A., Jurek, M., Masny, N., Dziatkiewicz, I., Pronobis-Szczylik, B., Piebiak, A., et al. (2023). Response to anti-SARS-CoV-2 mRNA vaccines in multiple myeloma and chronic lymphocytic leukemia patients. International Journal of Cancer, 152(4), 705-712. https://doi.org/10.1002/ijc.34209

Zamani, M. R., Aslani, S., Salmaninejad, A., Javan, M. R., & Rezaei, N. (2016). PD-1/PD-L and autoimmunity: A growing relationship. Cell Immunology, 310, 27-41. https://doi.org/10.1016/j.cellimm.2016.09.009

Zelenay, S., Lopes-Carvalho, T., Caramalho, I., Moraes-Fontes, M. F., Rebelo, M., & Demengeot, J. (2005). Foxp3+ CD25- CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proceedings of the National Academy of Sciences USA, 102(11), 4091-6. https://doi.org/10.1073/pnas.0408679102

Zeng, H., Yang, K., Cloer, C., Neale, G., Vogel, P., & Chi, H. (2013). mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature, 499(7459), 485-90. https://doi.org/10.1038/nature12297

Zhang, H. Q., Cao, B. Z., Cao, Q. T., Hun, M., Cao, L., & Zhao, M. Y. (2023). An analysis of reported cases of hemophagocytic lymphohistiocytosis (HLH) after COVID-19 vaccination. Human Vaccines & Immunotherapeutics, 19(2), 2263229. https://doi.org/10.1080/21645515.2023.2263229

Zhang, S. & El-Deiry, W. S. (2024). Transfected SARS-CoV-2 spike DNA for mammalian cell expression inhibits p53 activation of p21(WAF1), TRAIL Death Receptor DR5 and MDM2 proteins in cancer cells and increases cancer cell viability after chemotherapy exposure. Oncotarget, 15, 275-284. https://doi.org/10.18632/oncotarget.28582

Zhang, X., Lu, H., Peng, L., Zhou, J., Wang, M., Li, J., Liu, Z., Zhang, W., Zhao, Y., Zeng, X., & Lu, L. (2022). The role of PD-1/PD-Ls in the pathogenesis of IgG4-related disease. Rheumatology (Oxford), 61(2), 815-825. https://doi.org/10.1093/rheumatology/keab360

Zheng, H., Zhang, T., Xu, Y., Lu, X., & Sang, X. (2022). Autoimmune hepatitis after COVID-19 vaccination. Frontiers in Immunology, 13, 1035073. https://doi.org/10.3389/fimmu.2022.1035073

van der Geest, K. S., Abdulahad, W. H., Tete, S. M., Lorencetti, P. G., Horst, G., Bos, N. A., Kroesen, B. J., Brouwer, E., & Boots, A. M. (2014). Aging disturbs the balance between effector and regulatory CD4+ T cells. Experimental Gerontology, 60, 190-6. https://doi.org/10.1016/j.exger.2014.11.005

Downloads

Published

2024-10-25

How to Cite

Autoimmune and Neoplastic Outcomes After the mRNA Vaccination: The Role of T Regulatory Cell Responses. (2024). International Journal of Vaccine Theory, Practice, and Research , 3(2), 1395-1433. https://doi.org/10.56098/16j4nf05

Similar Articles

1-10 of 69

You may also start an advanced similarity search for this article.